ترغب بنشر مسار تعليمي؟ اضغط هنا

Automated Self-Supervised Learning for Graphs

104   0   0.0 ( 0 )
 نشر من قبل Wei Jin
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Graph self-supervised learning has gained increasing attention due to its capacity to learn expressive node representations. Many pretext tasks, or loss functions have been designed from distinct perspectives. However, we observe that different pretext tasks affect downstream tasks differently cross datasets, which suggests that searching pretext tasks is crucial for graph self-supervised learning. Different from existing works focusing on designing single pretext tasks, this work aims to investigate how to automatically leverage multiple pretext tasks effectively. Nevertheless, evaluating representations derived from multiple pretext tasks without direct access to ground truth labels makes this problem challenging. To address this obstacle, we make use of a key principle of many real-world graphs, i.e., homophily, or the principle that ``like attracts like, as the guidance to effectively search various self-supervised pretext tasks. We provide theoretical understanding and empirical evidence to justify the flexibility of homophily in this search task. Then we propose the AutoSSL framework which can automatically search over combinations of various self-supervised tasks. By evaluating the framework on 7 real-world datasets, our experimental results show that AutoSSL can significantly boost the performance on downstream tasks including node clustering and node classification compared with training under individual tasks. Code will be released at https://github.com/ChandlerBang/AutoSSL.



قيم البحث

اقرأ أيضاً

Enabling robots to autonomously navigate complex environments is essential for real-world deployment. Prior methods approach this problem by having the robot maintain an internal map of the world, and then use a localization and planning method to na vigate through the internal map. However, these approaches often include a variety of assumptions, are computationally intensive, and do not learn from failures. In contrast, learning-based methods improve as the robot acts in the environment, but are difficult to deploy in the real-world due to their high sample complexity. To address the need to learn complex policies with few samples, we propose a generalized computation graph that subsumes value-based model-free methods and model-based methods, with specific instantiations interpolating between model-free and model-based. We then instantiate this graph to form a navigation model that learns from raw images and is sample efficient. Our simulated car experiments explore the design decisions of our navigation model, and show our approach outperforms single-step and $N$-step double Q-learning. We also evaluate our approach on a real-world RC car and show it can learn to navigate through a complex indoor environment with a few hours of fully autonomous, self-supervised training. Videos of the experiments and code can be found at github.com/gkahn13/gcg
We study self-supervised learning on graphs using contrastive methods. A general scheme of prior methods is to optimize two-view representations of input graphs. In many studies, a single graph-level representation is computed as one of the contrasti ve objectives, capturing limited characteristics of graphs. We argue that contrasting graphs in multiple subspaces enables graph encoders to capture more abundant characteristics. To this end, we propose a group contrastive learning framework in this work. Our framework embeds the given graph into multiple subspaces, of which each representation is prompted to encode specific characteristics of graphs. To learn diverse and informative representations, we develop principled objectives that enable us to capture the relations among both intra-space and inter-space representations in groups. Under the proposed framework, we further develop an attention-based representor function to compute representations that capture different substructures of a given graph. Built upon our framework, we extend two current methods into GroupCL and GroupIG, equipped with the proposed objective. Comprehensive experimental results show our framework achieves a promising boost in performance on a variety of datasets. In addition, our qualitative results show that features generated from our representor successfully capture various specific characteristics of graphs.
Deep learning on graphs has recently achieved remarkable success on a variety of tasks while such success relies heavily on the massive and carefully labeled data. However, precise annotations are generally very expensive and time-consuming. To addre ss this problem, self-supervised learning (SSL) is emerging as a new paradigm for extracting informative knowledge through well-designed pretext tasks without relying on manual labels. In this survey, we extend the concept of SSL, which first emerged in the fields of computer vision and natural language processing, to present a timely and comprehensive review of the existing SSL techniques for graph data. Specifically, we divide existing graph SSL methods into three categories: contrastive, generative, and predictive. More importantly, unlike many other surveys that only provide a high-level description of published research, we present an additional mathematical summary of the existing works in a unified framework. Furthermore, to facilitate methodological development and empirical comparisons, we also summarize the commonly used datasets, evaluation metrics, downstream tasks, and open-source implementations of various algorithms. Finally, we discuss the technical challenges and potential future directions for improving graph self-supervised learning.
Graph neural networks have shown superior performance in a wide range of applications providing a powerful representation of graph-structured data. Recent works show that the representation can be further improved by auxiliary tasks. However, the aux iliary tasks for heterogeneous graphs, which contain rich semantic information with various types of nodes and edges, have less explored in the literature. In this paper, to learn graph neural networks on heterogeneous graphs we propose a novel self-supervised auxiliary learning method using meta-paths, which are composite relations of multiple edge types. Our proposed method is learning to learn a primary task by predicting meta-paths as auxiliary tasks. This can be viewed as a type of meta-learning. The proposed method can identify an effective combination of auxiliary tasks and automatically balance them to improve the primary task. Our methods can be applied to any graph neural networks in a plug-in manner without manual labeling or additional data. The experiments demonstrate that the proposed method consistently improves the performance of link prediction and node classification on heterogeneous graphs.
We present a plug-in replacement for batch normalization (BN) called exponential moving average normalization (EMAN), which improves the performance of existing student-teacher based self- and semi-supervised learning techniques. Unlike the standard BN, where the statistics are computed within each batch, EMAN, used in the teacher, updates its statistics by exponential moving average from the BN statistics of the student. This design reduces the intrinsic cross-sample dependency of BN and enhances the generalization of the teacher. EMAN improves strong baselines for self-supervised learning by 4-6/1-2 points and semi-supervised learning by about 7/2 points, when 1%/10% supervised labels are available on ImageNet. These improvements are consistent across methods, network architectures, training duration, and datasets, demonstrating the general effectiveness of this technique. The code is available at https://github.com/amazon-research/exponential-moving-average-normalization.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا