ترغب بنشر مسار تعليمي؟ اضغط هنا

AutoEmb: Automated Embedding Dimensionality Search in Streaming Recommendations

125   0   0.0 ( 0 )
 نشر من قبل Xiangyu Zhao
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Deep learning based recommender systems (DLRSs) often have embedding layers, which are utilized to lessen the dimensionality of categorical variables (e.g. user/item identifiers) and meaningfully transform them in the low-dimensional space. The majority of existing DLRSs empirically pre-define a fixed and unified dimension for all user/item embeddings. It is evident from recent researches that different embedding sizes are highly desired for different users/items according to their popularity. However, manually selecting embedding sizes in recommender systems can be very challenging due to the large number of users/items and the dynamic nature of their popularity. Thus, in this paper, we propose an AutoML based end-to-end framework (AutoEmb), which can enable various embedding dimensions according to the popularity in an automated and dynamic manner. To be specific, we first enhance a typical DLRS to allow various embedding dimensions; then we propose an end-to-end differentiable framework that can automatically select different embedding dimensions according to user/item popularity; finally we propose an AutoML based optimization algorithm in a streaming recommendation setting. The experimental results based on widely used benchmark datasets demonstrate the effectiveness of the AutoEmb framework.



قيم البحث

اقرأ أيضاً

Designing an effective loss function plays a crucial role in training deep recommender systems. Most existing works often leverage a predefined and fixed loss function that could lead to suboptimal recommendation quality and training efficiency. Some recent efforts rely on exhaustively or manually searched weights to fuse a group of candidate loss functions, which is exceptionally costly in computation and time. They also neglect the various convergence behaviors of different data examples. In this work, we propose an AutoLoss framework that can automatically and adaptively search for the appropriate loss function from a set of candidates. To be specific, we develop a novel controller network, which can dynamically adjust the loss probabilities in a differentiable manner. Unlike existing algorithms, the proposed controller can adaptively generate the loss probabilities for different data examples according to their varied convergence behaviors. Such design improves the models generalizability and transferability between deep recommender systems and datasets. We evaluate the proposed framework on two benchmark datasets. The results show that AutoLoss outperforms representative baselines. Further experiments have been conducted to deepen our understandings of AutoLoss, including its transferability, components and training efficiency.
Practical large-scale recommender systems usually contain thousands of feature fields from users, items, contextual information, and their interactions. Most of them empirically allocate a unified dimension to all feature fields, which is memory inef ficient. Thus it is highly desired to assign different embedding dimensions to different feature fields according to their importance and predictability. Due to the large amounts of feature fields and the nuanced relationship between embedding dimensions with feature distributions and neural network architectures, manually allocating embedding dimensions in practical recommender systems can be very difficult. To this end, we propose an AutoML based framework (AutoDim) in this paper, which can automatically select dimensions for different feature fields in a data-driven fashion. Specifically, we first proposed an end-to-end differentiable framework that can calculate the weights over various dimensions for feature fields in a soft and continuous manner with an AutoML based optimization algorithm; then we derive a hard and discrete embedding component architecture according to the maximal weights and retrain the whole recommender framework. We conduct extensive experiments on benchmark datasets to validate the effectiveness of the AutoDim framework.
306 - Yan Zhao , Shoujin Wang , Yan Wang 2020
Streaming Recommender Systems (SRSs) commonly train recommendation models on newly received data only to address user preference drift, i.e., the changing user preferences towards items. However, this practice overlooks the long-term user preferences embedded in historical data. More importantly, the common heterogeneity in data stream greatly reduces the accuracy of streaming recommendations. The reason is that different preferences (or characteristics) of different types of users (or items) cannot be well learned by a unified model. To address these two issues, we propose a Variational and Reservoir-enhanced Sampling based Double-Wing Mixture of Experts framework, called VRS-DWMoE, to improve the accuracy of streaming recommendations. In VRS-DWMoE, we first devise variational and reservoir-enhanced sampling to wisely complement new data with historical data, and thus address the user preference drift issue while capturing long-term user preferences. After that, we propose a Double-Wing Mixture of Experts (DWMoE) model to first effectively learn heterogeneous user preferences and item characteristics, and then make recommendations based on them. Specifically, DWMoE contains two Mixture of Experts (MoE, an effective ensemble learning model) to learn user preferences and item characteristics, respectively. Moreover, the multiple experts in each MoE learn the preferences (or characteristics) of different types of users (or items) where each expert specializes in one underlying type. Extensive experiments demonstrate that VRS-DWMoE consistently outperforms the state-of-the-art SRSs.
Recommender systems are an essential component of e-commerce marketplaces, helping consumers navigate massive amounts of inventory and find what they need or love. In this paper, we present an approach for generating personalized item recommendations in an e-commerce marketplace by learning to embed items and users in the same vector space. In order to alleviate the considerable cold-start problem present in large marketplaces, item and user embeddings are computed using content features and multi-modal onsite user activity respectively. Data ablation is incorporated into the offline model training process to improve the robustness of the production system. In offline evaluation using a dataset collected from eBay traffic, our approach was able to improve the Recall@k metric over the Recently-Viewed-Item (RVI) method. This approach to generating personalized recommendations has been launched to serve production traffic, and the corresponding scalable engineering architecture is also presented. Initial A/B test results show that compared to the current personalized recommendation module in production, the proposed method increases the surface rate by $sim$6% to generate recommendations for 90% of listing page impressions.
Personalized recommendations on the Netflix Homepage are based on a users viewing habits and the behavior of similar users. These recommendations, organized for efficient browsing, enable users to discover the next great video to watch and enjoy with out additional input or an explicit expression of their intents or goals. The Netflix Search experience, on the other hand, allows users to take active control of discovering new videos by explicitly expressing their entertainment needs via search queries. In this talk, we discuss the importance of producing search results that go beyond traditional keyword-matches to effectively satisfy users search needs in the Netflix entertainment setting. Motivated by users various search intents, we highlight the necessity to improve Search by applying approaches that have historically powered the Homepage. Specifically, we discuss our approach to leverage recommendations in the context of Search and to effectively organize search results to provide a product experience that meaningfully adds value for our users.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا