ﻻ يوجد ملخص باللغة العربية
Recently, recommender systems that aim to suggest personalized lists of items for users to interact with online have drawn a lot of attention. In fact, many of these state-of-the-art techniques have been deep learning based. Recent studies have shown that these deep learning models (in particular for recommendation systems) are vulnerable to attacks, such as data poisoning, which generates users to promote a selected set of items. However, more recently, defense strategies have been developed to detect these generated users with fake profiles. Thus, advanced injection attacks of creating more `realistic user profiles to promote a set of items is still a key challenge in the domain of deep learning based recommender systems. In this work, we present our framework CopyAttack, which is a reinforcement learning based black-box attack method that harnesses real users from a source domain by copying their profiles into the target domain with the goal of promoting a subset of items. CopyAttack is constructed to both efficiently and effectively learn policy gradient networks that first select, and then further refine/craft, user profiles from the source domain to ultimately copy into the target domain. CopyAttacks goal is to maximize the hit ratio of the targeted items in the Top-$k$ recommendation list of the users in the target domain. We have conducted experiments on two real-world datasets and have empirically verified the effectiveness of our proposed framework and furthermore performed a thorough model analysis.
Making accurate recommendations for cold-start users has been a longstanding and critical challenge for recommender systems (RS). Cross-domain recommendations (CDR) offer a solution to tackle such a cold-start problem when there is no sufficient data
Cross-Domain Recommendation (CDR) and Cross-System Recommendation (CSR) have been proposed to improve the recommendation accuracy in a target dataset (domain/system) with the help of a source one with relatively richer information. However, most exis
Cross-domain sequential recommendation is the task of predict the next item that the user is most likely to interact with based on past sequential behavior from multiple domains. One of the key challenges in cross-domain sequential recommendation is
Machine learning methods allow us to make recommendations to users in applications across fields including entertainment, dating, and commerce, by exploiting similarities in users interaction patterns. However, in domains that demand protection of pe
Recent studies have shown that adversarial examples in state-of-the-art image classifiers trained by deep neural networks (DNN) can be easily generated when the target model is transparent to an attacker, known as the white-box setting. However, when