ترغب بنشر مسار تعليمي؟ اضغط هنا

It is known that any tropical polytope is the image under the valuation map of ordinary polytopes over the Puiseux series field. The latter polytopes are called lifts of the tropical polytope. We prove that any pure tropical polytope is the intersect ion of the tropical half-spaces given by the images under the valuation map of the facet-defining half-spaces of a certain lift. We construct this lift explicitly, taking into account geometric properties of the given polytope. Moreover, when the generators of the tropical polytope are in general position, we prove that the above property is satisfied for any lift. This solves a conjecture of Develin and Yu.
We discuss the tropical analogues of several basic questions of convex duality. In particular, the polar of a tropical polyhedral cone represents the set of linear inequalities that its elements satisfy. We characterize the extreme rays of the polar in terms of certain minimal set covers which may be thought of as weighted generalizations of minimal transversals in hypergraphs. We also give a tropical analogue of Farkas lemma, which allows one to check whether a linear inequality is implied by a finite family of linear inequalities. Here, the certificate is a strategy of a mean payoff game. We discuss examples, showing that the number of extreme rays of the polar of the tropical cyclic polyhedral cone is polynomially bounded, and that there is no unique minimal system of inequalities defining a given tropical polyhedral cone.
The celebrated upper bound theorem of McMullen determines the maximal number of extreme points of a polyhedron in terms of its dimension and the number of constraints which define it, showing that the maximum is attained by the polar of the cyclic po lytope. We show that the same bound is valid in the tropical setting, up to a trivial modification. Then, we study the natural candidates to be the maximizing polyhedra, which are the polars of a family of cyclic polytopes equipped with a sign pattern. We construct bijections between the extreme points of these polars and lattice paths depending on the sign pattern, from which we deduce explicit bounds for the number of extreme points, showing in particular that the upper bound is asymptotically tight as the dimension tends to infinity, keeping the number of constraints fixed. When transposed to the classical case, the previous constructions yield some lattice path generalizations of Gales evenness criterion.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا