ترغب بنشر مسار تعليمي؟ اضغط هنا

Tropical polar cones, hypergraph transversals, and mean payoff games

130   0   0.0 ( 0 )
 نشر من قبل Stephane Gaubert
 تاريخ النشر 2010
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We discuss the tropical analogues of several basic questions of convex duality. In particular, the polar of a tropical polyhedral cone represents the set of linear inequalities that its elements satisfy. We characterize the extreme rays of the polar in terms of certain minimal set covers which may be thought of as weighted generalizations of minimal transversals in hypergraphs. We also give a tropical analogue of Farkas lemma, which allows one to check whether a linear inequality is implied by a finite family of linear inequalities. Here, the certificate is a strategy of a mean payoff game. We discuss examples, showing that the number of extreme rays of the polar of the tropical cyclic polyhedral cone is polynomially bounded, and that there is no unique minimal system of inequalities defining a given tropical polyhedral cone.



قيم البحث

اقرأ أيضاً

Tropical polyhedra have been recently used to represent disjunctive invariants in static analysis. To handle larger instances, tropical analogues of classical linear programming results need to be developed. This motivation leads us to study the trop ical analogue of the classical linear-fractional programming problem. We construct an associated parametric mean payoff game problem, and show that the optimality of a given point, or the unboundedness of the problem, can be certified by exhibiting a strategy for one of the players having certain infinitesimal properties (involving the value of the game and its derivative) that we characterize combinatorially. We use this idea to design a Newton-like algorithm to solve tropical linear-fractional programming problems, by reduction to a sequence of auxiliary mean payoff game problems.
We study the max-plus or tropical analogue of the notion of polar: the polar of a cone represents the set of linear inequalities satisfied by its elements. We establish an analogue of the bipolar theorem, which characterizes all the inequalities sati sfied by the elements of a tropical convex cone. We derive this characterization from a new separation theorem. We also establish variants of these results concerning systems of linear equalities.
Mean-payoff games on timed automata are played on the infinite weighted graph of configurations of priced timed automata between two players, Player Min and Player Max, by moving a token along the states of the graph to form an infinite run. The goal of Player Min is to minimize the limit average weight of the run, while the goal of the Player Max is the opposite. Brenguier, Cassez, and Raskin recently studied a variation of these games and showed that mean-payoff games are undecidable for timed automata with five or more clocks. We refine this result by proving the undecidability of mean-payoff games with three clocks. On a positive side, we show the decidability of mean-payoff games on one-clock timed automata with binary price-rates. A key contribution of this paper is the application of dynamic programming based proof techniques applied in the context of average reward optimization on an uncountable state and action space.
129 - Hugo Gimbert 2010
We examine perfect information stochastic mean-payoff games - a class of games containing as special sub-classes the usual mean-payoff games and parity games. We show that deterministic memoryless strategies that are optimal for discounted games with state-dependent discount factors close to 1 are optimal for priority mean-payoff games establishing a strong link between these two classes.
108 - Aditya Potukuchi 2018
We study hypergraph discrepancy in two closely related random models of hypergraphs on $n$ vertices and $m$ hyperedges. The first model, $mathcal{H}_1$, is when every vertex is present in exactly $t$ randomly chosen hyperedges. The premise of this is closely tied to, and motivated by the Beck-Fiala conjecture. The second, perhaps more natural model, $mathcal{H}_2$, is when the entries of the $m times n$ incidence matrix is sampled in an i.i.d. fashion, each with probability $p$. We prove the following: 1. In $mathcal{H}_1$, when $log^{10}n ll t ll sqrt{n}$, and $m = n$, we show that the discrepancy of the hypergraph is almost surely at most $O(sqrt{t})$. This improves upon a result of Ezra and Lovett for this range of parameters. 2. In $mathcal{H}_2$, when $p= frac{1}{2}$, and $n = Omega(m log m)$, we show that the discrepancy is almost surely at most $1$. This answers an open problem of Hoberg and Rothvoss.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا