ﻻ يوجد ملخص باللغة العربية
The celebrated upper bound theorem of McMullen determines the maximal number of extreme points of a polyhedron in terms of its dimension and the number of constraints which define it, showing that the maximum is attained by the polar of the cyclic polytope. We show that the same bound is valid in the tropical setting, up to a trivial modification. Then, we study the natural candidates to be the maximizing polyhedra, which are the polars of a family of cyclic polytopes equipped with a sign pattern. We construct bijections between the extreme points of these polars and lattice paths depending on the sign pattern, from which we deduce explicit bounds for the number of extreme points, showing in particular that the upper bound is asymptotically tight as the dimension tends to infinity, keeping the number of constraints fixed. When transposed to the classical case, the previous constructions yield some lattice path generalizations of Gales evenness criterion.
In 1992, Kalai and Kleitman proved a quasipolynomial upper bound on the diameters of convex polyhedra. Todd and Sukegawa-Kitahara proved tail-quasipolynomial bounds on the diameters of polyhedra. These tail bounds apply when the number of facets is g
This paper is concerned with the extreme points of the polytopes of stochastic tensors. By a tensor we mean a multi-dimensional array over the real number field. A line-stochastic tensor is a nonnegative tensor in which the sum of all entries on each
We give a characterization of the minimal tropical half-spaces containing a given tropical polyhedron, from which we derive a counter example showing that the number of such minimal half-spaces can be infinite, contradicting some statements which app
A spectral convex set is a collection of symmetric matrices whose range of eigenvalues form a symmetric convex set. Spectral convex sets generalize the Schur-Horn orbitopes studied by Sanyal-Sottile-Sturmfels (2011). We study this class of convex bod
We study the max-plus or tropical analogue of the notion of polar: the polar of a cone represents the set of linear inequalities satisfied by its elements. We establish an analogue of the bipolar theorem, which characterizes all the inequalities sati