ترغب بنشر مسار تعليمي؟ اضغط هنا

Tropicalization of facets of polytopes

192   0   0.0 ( 0 )
 نشر من قبل Xavier Allamigeon
 تاريخ النشر 2014
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

It is known that any tropical polytope is the image under the valuation map of ordinary polytopes over the Puiseux series field. The latter polytopes are called lifts of the tropical polytope. We prove that any pure tropical polytope is the intersection of the tropical half-spaces given by the images under the valuation map of the facet-defining half-spaces of a certain lift. We construct this lift explicitly, taking into account geometric properties of the given polytope. Moreover, when the generators of the tropical polytope are in general position, we prove that the above property is satisfied for any lift. This solves a conjecture of Develin and Yu.



قيم البحث

اقرأ أيضاً

We study the number of facets of the convex hull of n independent standard Gaussian points in d-dimensional Euclidean space. In particular, we are interested in the expected number of facets when the dimension is allowed to grow with the sample size. We establish an explicit asymptotic formula that is valid whenever d/n tends to zero. We also obtain the asymptotic value when d is close to n.
340 - Sven Herrmann 2009
The secondary polytope of a point configuration A is a polytope whose face poset is isomorphic to the poset of all regular subdivisions of A. While the vertices of the secondary polytope - corresponding to the triangulations of A - are very well stud ied, there is not much known about the facets of the secondary polytope. The splits of a polytope, subdivisions with exactly two maximal faces, are the simplest examples of such facets and the first that were systematically investigated. The present paper can be seen as a continuation of these studies and as a starting point of an examination of the subdivisions corresponding to the facets of the secondary polytope in general. As a special case, the notion of k-split is introduced as a possibility to classify polytopes in accordance to the complexity of the facets of their secondary polytopes. An application to matroid subdivisions of hypersimplices and tropical geometry is given.
140 - Thomas Kahle 2008
A neighborliness property of marginal polytopes of hierarchical models, depending on the cardinality of the smallest non-face of the underlying simplicial complex, is shown. The case of binary variables is studied explicitly, then the general case is reduced to the binary case. A Markov basis for binary hierarchical models whose simplicial complexes is the complement of an interval is given.
Considering $ntimes ntimes n$ stochastic tensors $(a_{ijk})$ (i.e., nonnegative hypermatrices in which every sum over one index $i$, $j$, or $k$, is 1), we study the polytope ($Omega_{n}$) of all these tensors, the convex set ($L_n$) of all tensors i n $Omega_{n}$ with some positive diagonals, and the polytope ($Delta_n$) generated by the permutation tensors. We show that $L_n$ is almost the same as $Omega_{n}$ except for some boundary points. We also present an upper bound for the number of vertices of $Omega_{n}$.
85 - Sharon Robins 2021
We study the integer decomposition property of lattice polytopes associated with the $n$-dimensional smooth complete fans with at most $n+3$ rays. Using the classification of smooth complete fans by Kleinschmidt and Batyrev and a reduction to lower d imensional polytopes we prove the integer decomposition property for lattice polytopes in this setting.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا