ترغب بنشر مسار تعليمي؟ اضغط هنا

The magneto-phonon resonance or MPR occurs in semiconductor materials when the energy spacing between Landau levels is continuously tuned to cross the energy of an optical phonon mode. MPRs have been largely explored in bulk semiconductors, in two-di mensional systems and in quantum dots. Recently there has been significant interest in the MPR interactions of the Dirac fermion magnetoexcitons in graphene, and a rich splitting and anti-crossing phenomena of the even parity E2g long wavelength optical phonon mode have been theoretically proposed and experimentally observed. The MPR has been found to crucially depend on disorder in the graphene layer. This is a feature that creates new venues for the study of interplays between disorder and interactions in the atomic layers. We review here the fundamentals of MRP in graphene and the experimental Raman scattering works that have led to the observation of these phenomena in graphene and graphite.
We observe a low-lying sharp spin mode of three interacting electrons in an array of nanofabricated AlGaAs/GaAs quantum dots by means of resonant inelastic light scattering. The finding is enabled by a suppression of the inhomogeneous contribution to the excitation spectra obtained by reducing the number of optically-probed quantum dots. Supported by configuration-interaction calculations we argue that the observed spin mode offers a direct probe of Stoner ferromagnetism in the simplest case of three interacting spin one-half fermions.
We observe the low-lying excitations of a molecular dimer formed by two electrons in a GaAs semiconductor quantum dot in which the number of confined electrons is tuned by optical illumination. By employing inelastic light scattering we identify the inter-shell excitations in the one-electron regime and the distinct spin and charge modes in the interacting few-body configuration. In the case of two electrons a comparison with configuration-interaction calculations allows us to link the observed excitations with the breathing mode of the molecular dimer and to determine the singlet-triplet energy splitting.
Inter-layer excitonic coherence in a quantum Hall bilayer with negligible tunneling is monitored by measurements of low-lying spin excitations. At $ u_T =1$ new quasiparticle excitations are observed above a transition temperature revealing a competi ng metallic phase. For magnetic fields above an onset Zeeman energy this metallic phase has full spin polarization. A phase diagram in the parameter space of temperature and Zeeman energy reveals that the transition temperature increases at higher fields. This unexpected result suggests intriguing impacts of spin polarization in the highly correlated phases.
Correlation among particles in finite quantum systems leads to complex behaviour and novel states of matter. One remarkable example is predicted to occur in a semiconductor quantum dot (QD) where at vanishing density the Coulomb correlation among ele ctrons rigidly fixes their relative position as that of the nuclei in a molecule. In this limit, the neutral few-body excitations are roto-vibrations, which have either rigid-rotor or relative-motion character. In the weak-correlation regime, on the contrary, the Coriolis force mixes rotational and vibrational motions. Here we report evidence of roto-vibrational modes of an electron molecular state at densities for which electron localization is not yet fully achieved. We probe these collective modes by inelastic light scattering in QDs containing four electrons. Spectra of low-lying excitations associated to changes of the relative-motion wave function -the analogues of the vibration modes of a conventional molecule- do not depend on the rotational state represented by the total angular momentum. Theoretical simulations via the configuration-interaction (CI) method are in agreement with the observed roto-vibrational modes and indicate that such molecular excitations develop at the onset of short-range correlation.
The authors report that anisotropic confining potentials in laterally-coupled semiconductor quantum dots (QDs) have large impacts in optical transitions and energies of inter-shell collective electronic excitations. The observed anisotropies are reve aled by inelastic light scattering as a function of the in-plane direction of light polarization and can be finely controlled by modifying the geometrical shape of the QDs. These experiments show that the tuning of the QD confinement potential offers a powerful method to manipulate electronic states and far-infrared inter-shell optical transitions in quantum dots.
Complexity in many-particle systems occurs through processes of qualitative differentiation. These are described by concepts such as emerging states with specific symmetries that are linked to order parameters. In quantum Hall phases of electrons in semiconductor double layers with large inter-layer electron correlation there is an emergent many body exciton phase with an order parameter that measures the condensate fraction of excitons across the tunneling gap. As the inter-layer coupling is reduced by application of an in-plane magnetic field, this excitonic insulating state is brought in competition with a Fermi-metal phase of composite fermions (loosely, electrons with two magnetic flux quanta attached) stabilized by intra-layer electron correlation. Here we show that the quantum phase transformation between metallic and excitonic insulating states in the coupled bilayers becomes discontinuous (first-order) by impacts of different terms of the electron-electron interactions that prevail on weak residual disorder. The evidence is based on precise determinations of the excitonic order parameter by inelastic light scattering measurements close to the phase boundary. While there is marked softening of low-lying excitations, our experiments underpin the roles of competing orders linked to quasi-particle correlations in removing the divergence of quantum fluctuations.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا