ﻻ يوجد ملخص باللغة العربية
Correlation among particles in finite quantum systems leads to complex behaviour and novel states of matter. One remarkable example is predicted to occur in a semiconductor quantum dot (QD) where at vanishing density the Coulomb correlation among electrons rigidly fixes their relative position as that of the nuclei in a molecule. In this limit, the neutral few-body excitations are roto-vibrations, which have either rigid-rotor or relative-motion character. In the weak-correlation regime, on the contrary, the Coriolis force mixes rotational and vibrational motions. Here we report evidence of roto-vibrational modes of an electron molecular state at densities for which electron localization is not yet fully achieved. We probe these collective modes by inelastic light scattering in QDs containing four electrons. Spectra of low-lying excitations associated to changes of the relative-motion wave function -the analogues of the vibration modes of a conventional molecule- do not depend on the rotational state represented by the total angular momentum. Theoretical simulations via the configuration-interaction (CI) method are in agreement with the observed roto-vibrational modes and indicate that such molecular excitations develop at the onset of short-range correlation.
The thermopower of a Kondo-correlated gate-defined quantum dot is studied using a current heating technique. In the presence of spin correlations the thermopower shows a clear deviation from the semiclassical Mott relation between thermopower and con
We investigate dynamical transport aspects of a combined nanomechanical-superconducting device in which Cooper pair tunneling interfere with the mechanical motion of a vibrating molecular quantum dot embedded in a Josephson junction. Six different re
Universal properties of entangled many-body states are controlled by their symmetry and quantum fluctuations. By magnetic-field tuning of the spin-orbital degeneracy in a Kondo-correlated quantum dot, we have modified quantum fluctuations to directly
The Coulomb interaction generally limits the quantum propagation of electrons. However, it can also provide a mechanism to transfer their quantum state over larger distances. Here, we demonstrate such a form of teleportation, across a metallic island
We report transport measurements on a semiconductor quantum dot with a small number of confined electrons. In the Coulomb blockade regime, conduction is dominated by cotunneling processes. These can be either elastic or inelastic, depending on whethe