ترغب بنشر مسار تعليمي؟ اضغط هنا

Raman Spectroscopy of magneto-phonon resonances in Graphene and Graphite

160   0   0.0 ( 0 )
 نشر من قبل Sarah Goler
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The magneto-phonon resonance or MPR occurs in semiconductor materials when the energy spacing between Landau levels is continuously tuned to cross the energy of an optical phonon mode. MPRs have been largely explored in bulk semiconductors, in two-dimensional systems and in quantum dots. Recently there has been significant interest in the MPR interactions of the Dirac fermion magnetoexcitons in graphene, and a rich splitting and anti-crossing phenomena of the even parity E2g long wavelength optical phonon mode have been theoretically proposed and experimentally observed. The MPR has been found to crucially depend on disorder in the graphene layer. This is a feature that creates new venues for the study of interplays between disorder and interactions in the atomic layers. We review here the fundamentals of MRP in graphene and the experimental Raman scattering works that have led to the observation of these phenomena in graphene and graphite.



قيم البحث

اقرأ أيضاً

163 - Hugen Yan , Daohua Song , et al 2009
Time-resolved Raman spectroscopy has been applied to probe the anharmonic coupling and electron-phonon interaction of optical phonons in graphite. From the decay of the transient anti-Stokes scattering of the G-mode following ultrafast excitation, we measured a lifetime of 2.2+/-0.1ps for zone-center optical phonons. We also observed a transient stiffening of G-mode phonons, an effect attributed to the reduction of the electron-phonon coupling for high electronic temperatures.
Magneto-Raman scattering experiments from the surface of graphite reveal novel features associated to purely electronic excitations which are observed in addition to phonon-mediated resonances. Graphene-like and graphite domains are identified throug h experiments with $sim 1mu m$ spatial resolution performed in magnetic fields up to 32T. Polarization resolved measurements emphasize the characteristic selection rules for electronic transitions in graphene. Graphene on graphite displays the unexpected hybridization between optical phonon and symmetric across the Dirac point inter Landau level transitions. The results open new experimental possibilities - to use light scattering methods in studies of graphene under quantum Hall effect conditions.
The Raman peak position and linewidth provide insight into phonon anharmonicity and electron-phonon interactions (EPI) in materials. For monolayer graphene, prior first-principles calculations have yielded decreasing linewidth with increasing tempera ture, which is opposite to measurement results. Here, we explicitly consider four-phonon anharmonicity, phonon renormalization, and electron-phonon coupling, and find all to be important to successfully explain both the $G$ peak frequency shift and linewidths in our suspended graphene sample at a wide temperature range. Four-phonon scattering contributes a prominent linewidth that increases with temperature, while temperature dependence from EPI is found to be reversed above a doping threshold ($hbaromega_G/2$, with $omega_G$ being the frequency of the $G$ phonon).
We present an analysis of deep-UV Raman measurements of graphite, graphene and carbon nanotubes. For excitation energies above the strong optical absorption peak at the $M$ point in the Brillouin zone ($approx 4.7,text{eV}$), we partially suppress do uble-resonant scattering processes and observe the two-phonon density of states of carbon nanomaterials. The measured peaks are assigned to contributions from LO, TO, and LA phonon branches, supported by calculations of the phonon dispersion. Moreover, we gain access to the infrared-active $E_{1u}$ mode in graphite. By lowering the excitation energy and thus allowing double-resonant scattering processes, we demonstrate the rise of the textit{2D} mode in graphite with ultra-short phonon wave vectors.
Multi-layer graphene with rhombohedral stacking is a promising carbon phase possibly displaying correlated states like magnetism or superconductivity due to the occurrence of a flat surface band at the Fermi level. Recently, flakes of thickness up to 17 layers were tentatively attributed ABC sequences although the Raman fingerprint of rhombohedral multilayer graphene is currently unknown and the 2D resonant Raman spectrum of Bernal graphite not understood. We provide a first principles description of the 2D Raman peak in three and four layers graphene (all stackings) as well as in Bernal, rhombohedral and an alternation of Bernal and rhombohedral graphite. We give practical prescriptions to identify long range sequences of ABC multi-layer graphene. Our work is a prerequisite to experimental non-destructive identification and synthesis of rhombohedral graphite.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا