ترغب بنشر مسار تعليمي؟ اضغط هنا

Neutrino mixing parameters are subject to quantum corrections and hence are scale dependent. This means that the mixing parameters associated to the production and detection of neutrinos need not coincide since these processes are characterized by di fferent energy scales. We show that, in the presence of relatively light new physics, the scale dependence of the mixing parameters can lead to observable consequences in long-baseline neutrino oscillation experiments, such as T2K and NOvA, and in neutrino telescopes like IceCube. We discuss some of the experimental signatures of this scenario, including zero-baseline flavor transitions, new sources of CP-invariance violation, and apparent inconsistencies among measurements of mixing angles at different experiments or oscillation channels. Finally, we present simple, ultraviolet-complete models of neutrino masses which lead to observable running of the neutrino mixing matrix below the weak scale.
We discuss neutrino magnetic moments as a way of constraining physics beyond the Standard Model. In fact, new physics at the TeV scale can easily generate observable neutrino magnetic moments, and there exists a multitude of ways of probing them. We highlight in particular direct dark matter detection experiments (which are sensitive to neutrino magnetic moments because of the predicted modifications to the solar neutrino scattering rate), stellar cooling, and cosmological constraints.
The muon anomalous magnetic moment measurement has, for more than a decade, been a long-standing anomaly hinting the physics beyond the Standard Model (BSM). The recently announced results from muon $g-2$ collaboration, corresponding to 3.3$sigma$ de viation from Standard Model value (4.2$sigma$ in combination with previous measurement) are strengthening the need for new physics coupled to muons. In this letter, we propose a novel scenario in which Standard Model (SM) is augmented by an axion-like particle (ALP) and vector-like fermions. We find that such a model admits an excellent interpretation of recent muon $g-2$ measurement through quantum process featuring ALP interacting with muons and newly introduced fermions. Previously proposed explanations with ALPs utilize interactions with photons and/or SM fermions. Therefore, in this letter we complement and extend such scenarios. We also discuss collider prospects for the model as well as the possibility that ALP is long lived or stable dark matter (DM) candidate.
Axion-like particles (ALPs) provide a promising direction in the search for new physics, while a wide range of models incorporate ALPs. We point out that future neutrino experiments, such as DUNE, possess competitive sensitivity to ALP signals. The h igh-intensity proton beam impinging on a target can not only produce copious amounts of neutrinos, but also cascade photons that are created from charged particle showers stopping in the target. Therefore, ALPs interacting with photons can be produced (often energetically) with high intensity via the Primakoff effect and then leave their signatures at the near detector through the inverse Primakoff scattering or decays to a photon pair. Moreover, the high-capability near detectors allow for discrimination between ALP signals and potential backgrounds, improving the signal sensitivity further. We demonstrate that a DUNE-like detector can explore a wide range of parameter space in ALP-photon coupling $g_{agamma}$ vs ALP mass $m_a$, including some regions unconstrained by existing bounds; the cosmological triangle will be fully explored and the sensitivity limits would reach up to $m_asim3-4$ GeV and down to $g_{agamma}sim 10^{-8} {rm GeV}^{-1}$.
The North American Nanohertz Observatory for Gravitational Waves (NANOGrav) has recently reported strong evidence for a stochastic common-spectrum process affecting the pulsar timing residuals in its 12.5-year data set. We demonstrate that this proce ss admits an interpretation in terms of a stochastic gravitational-wave background emitted by a cosmic-string network in the early Universe. We study stable Nambu-Goto strings in dependence of their tension $Gmu$ and loop size $alpha$ and show that the entire viable parameter space will be probed by an array of future experiments.
We revisit the physics of neutrino magnetic moments, focusing in particular on the case where the right-handed, or sterile, neutrinos are heavier (up to several MeV) than the left-handed Standard Model neutrinos. The discussion is centered around the idea of detecting an upscattering event mediated by a transition magnetic moment in a neutrino or dark matter experiment. Considering neutrinos from all known sources, as well as including all available data from XENON1T and Borexino, we derive the strongest up-to-date exclusion limits on the active-to-sterile neutrino transition magnetic moment. We then study complementary constraints from astrophysics and cosmology, performing, in particular, a thorough analysis of BBN. We find that these data sets scrutinize most of the relevant parameter space. Explaining the XENON1T excess with transition magnetic moments is marginally possible if conservative assumptions are adopted regarding the supernova 1987A and CMB constraints. Finally, we discuss model-building challenges that arise in scenarios that feature large magnetic moments while keeping neutrino masses well below 1 eV. We present a successful ultraviolet-complete model of this type based on TeV-scale leptoquarks, establishing links with muon magnetic moment, B physics anomalies, and collider searches at the LHC.
We consider the extension of the Standard Model (SM) with a strongly interacting QCD-like hidden sector, at least two generations of right-handed neutrinos and one scalar singlet. Once scalar singlet obtains a nonzero vacuum expectation value, active neutrino masses are generated through type-I seesaw mechanism. Simultaneously, the electroweak scale is generated through the radiative corrections involving these massive fermions. This is the essence of the scenario that is known as the neutrino option for which the successful masses of right-handed neutrinos are in the range $10^7-10^8$ GeV. The main goal of this work is to scrutinize the potential to accommodate dark matter in such a realization. The dark matter candidates are Nambu-Goldstone bosons which appear due to the dynamical breaking of the hidden chiral symmetry. The mass spectrum studied in this work is such that masses of Nambu-Goldstone bosons and singlet scalar exceed those of right-handed neutrinos. Having the masses of all relevant particles several orders of magnitude above $mathcal{O}$(TeV), the freeze-out of dark matter is not achievable and hence we turn to alternative scenarios, namely freeze-in. The Nambu-Goldstone bosons can interact with particles that are not in SM but, however, have non-negligible abundance through their not-too-small couplings with SM. Utilizing this, we demonstrate that the dark matter in the model is successfully produced at temperature scale where the right-handed neutrinos are still stable. We note that the lepton number asymmetry sufficient for the generation of observable baryon asymmetry of the Universe can be produced in right-handed neutrino decays. Hence, we infer that the model has the potential to simultaneously address several of the most relevant puzzles in contemporary high-energy physics.
The dynamical generation of right-handed-neutrino (RHN) masses in the early Universe naturally entails the formation of cosmic strings that give rise to an observable signal in gravitational waves (GWs). Here, we show that a characteristic break in t he GW spectrum would provide evidence for a new stage in the cosmological expansion history and a suppression of the RHN mass scale compared to the scale of spontaneous symmetry breaking. The detection of such a spectral feature would thus represent a novel and unique possibility to probe the physics of RHN mass generation in regions of parameter space that allow for low-scale leptogenesis in accord with electroweak naturalness.
Given the elusive nature of neutrinos, their self-interaction is particularly difficult to probe. Nevertheless, upper limits on the strength of such an interaction can be set by using data from terrestrial experiments. In this work we focus on additi onal contributions to the invisible decay width of $Z$ boson as well as the leptonic $tau$ decay width in the presence of a neutrino coupling to a relatively light scalar. For invisible $Z$ decays we derive a complete set of constraints by considering both three-body bremsstrahlung as well as the loop correction to two-body decays. While the latter is usually regarded to give rather weak limits we find that through the interference with the Standard Model diagram it actually yields a competitive constraint. As far as leptonic decays of $tau$ are concerned, we derive a first limit on neutrino self-interactions that is valid across the whole mass range of a light scalar mediator. Our bounds on the neutrino self-interaction are leading for $m_phi gtrsim 300$ MeV and interactions that prefer $ u_tau$. Bounds on such $ u$-philic scalar are particularly relevant in light of the recently proposed alleviation of the Hubble tension in the presence of such couplings.
Left-right symmetry at high energy scales is a well-motivated extension of the Standard Model. In this paper we consider a typical minimal scenario in which it gets spontaneously broken by scalar triplets. Such a realization has been scrutinized over the past few decades chiefly in the context of collider studies. In this work we take a complementary approach and investigate whether the model can be probed via the search for a stochastic gravitational wave background induced by the phase transition in which $SU(3)_C times SU(2)_L times SU(2)_R times U(1)_{B-L}$ is broken down to the Standard Model gauge symmetry group. A prerequisite for gravitational wave production in this context is a first-order phase transition, the occurrence of which we find in a significant portion of the parameter space. Although the produced gravitational waves are typically too weak for a discovery at any current or future detector, upon investigating correlations between all relevant terms in the scalar potential, we have identified values of parameters leading to observable signals. This indicates that, given a certain moderate fine-tuning, the minimal left-right symmetric model with scalar triplets features another powerful probe which can lead to either novel constraints or remarkable discoveries in the near future. Let us note that some of our results, such as the full set of thermal masses, have to the best of our knowledge not been presented before and might be useful for future studies, in particular in the context of electroweak baryogenesis.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا