ترغب بنشر مسار تعليمي؟ اضغط هنا

Heavy Dark Matter, Neutrino Masses and Higgs Naturalness from a Strongly Interacting Hidden Sector

251   0   0.0 ( 0 )
 نشر من قبل Vedran Brdar
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider the extension of the Standard Model (SM) with a strongly interacting QCD-like hidden sector, at least two generations of right-handed neutrinos and one scalar singlet. Once scalar singlet obtains a nonzero vacuum expectation value, active neutrino masses are generated through type-I seesaw mechanism. Simultaneously, the electroweak scale is generated through the radiative corrections involving these massive fermions. This is the essence of the scenario that is known as the neutrino option for which the successful masses of right-handed neutrinos are in the range $10^7-10^8$ GeV. The main goal of this work is to scrutinize the potential to accommodate dark matter in such a realization. The dark matter candidates are Nambu-Goldstone bosons which appear due to the dynamical breaking of the hidden chiral symmetry. The mass spectrum studied in this work is such that masses of Nambu-Goldstone bosons and singlet scalar exceed those of right-handed neutrinos. Having the masses of all relevant particles several orders of magnitude above $mathcal{O}$(TeV), the freeze-out of dark matter is not achievable and hence we turn to alternative scenarios, namely freeze-in. The Nambu-Goldstone bosons can interact with particles that are not in SM but, however, have non-negligible abundance through their not-too-small couplings with SM. Utilizing this, we demonstrate that the dark matter in the model is successfully produced at temperature scale where the right-handed neutrinos are still stable. We note that the lepton number asymmetry sufficient for the generation of observable baryon asymmetry of the Universe can be produced in right-handed neutrino decays. Hence, we infer that the model has the potential to simultaneously address several of the most relevant puzzles in contemporary high-energy physics.

قيم البحث

اقرأ أيضاً

We consider a minimal extension of the Standard Model with a hidden sector charged under a dark local $U(1)$ gauge group, accounting simultaneously for light neutrino masses and the observed Dark Matter relic abundance. The model contains two copies of right-handed neutrinos which give rise to light neutrino-masses via an extended seesaw mechanism. The presence of a stable Dark-Matter candidate and a massless state naturally arise by requiring the simplest anomaly-free particle content without introducing any extra symmetries. We investigate the phenomenology of the hidden sector considering the $U(1)$ breaking scale of the order of the electroweak scale. Confronting the thermal history of this hidden-sector model with existing and future constraints from collider, direct and indirect detection experiments provides various possibilities of probing the model in complementary ways as every particle of the dark sector plays a specific cosmological role. Across the identified viable parameter space, a large region predicts a sizable contribution to the effective relativistic degrees-of-freedom in the early Universe that allows to alleviate the recently reported tension between late and early measurements of the Hubble constant.
We show that supersymmetric Dark Force models with gravity mediation are viable. To this end, we analyse a simple string-inspired supersymmetric hidden sector model that interacts with the visible sector via kinetic mixing of a light Abelian gauge bo son with the hypercharge. We include all induced interactions with the visible sector such as neutralino mass mixing and the Higgs portal term. We perform a detailed parameter space scan comparing the produced dark matter relic abundance and direct detection cross sections to current experiments.
The short distance behavior of dark matter (DM) at galaxy scales exhibits several features not explained by the typical cold dark matter (CDM) with velocity-independent cross-section. We discuss a particle physics model with a hidden sector interacti ng feebly with the visible sector where a dark fermion self-interacts via a dark force with a light dark photon as the mediator. We study coupled Boltzmann equations involving two temperatures, one for each sector. We fit the velocity-dependent DM cross-section to the data from scales of dwarf galaxies to clusters consistent with relic density constraint.
We develop a simple description of models where electroweak symmetry breaking is triggered by a light composite Higgs, which emerges from a strongly-interacting sector as a pseudo-Goldstone boson. Two parameters broadly characterize these models: m_r ho, the mass scale of the new resonances and g_rho, their coupling. An effective low-energy Lagrangian approach proves to be useful for LHC and ILC phenomenology below the scale m_rho. We identify two classes of operators: those that are genuinely sensitive to the new strong force and those that are sensitive to the spectrum of the resonances only. Phenomenological prospects for the LHC and the ILC include the study of high-energy longitudinal vector boson scattering, strong double-Higgs production and anomalous Higgs couplings. We finally discuss the possibility that the top quark could also be a composite object of the strong sector.
We consider a strongly interacting twin Higgs (SITH) model where an ultraviolet completion of twin Higgs mechanism is realized by a strongly coupled approximately scale invariant theory. Besides the Standard Model (SM) and twin sectors, the low energ y effective theory contains a relatively light scalar called a dilaton --- the pseudo Goldstone boson of spontaneously broken scale invariance. The dilaton provides a unique portal between the SM and twin sectors whose phenomenology could provide an important probe of the twin Higgs mechanism. As a concrete example, we consider a holographic twin Higgs model where the role of the dilaton is played by the radion. The phenomenology of this model is fully determined by a few parameters and our analysis concludes that at the HL-LHC (14 TeV) and HE-LHC (27 TeV) with 3000/fb most of the natural parameter space can be probed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا