ترغب بنشر مسار تعليمي؟ اضغط هنا

Semi-secretly interacting ALP as an explanation of Fermilab muon $g-2$ measurement

77   0   0.0 ( 0 )
 نشر من قبل Vedran Brdar
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The muon anomalous magnetic moment measurement has, for more than a decade, been a long-standing anomaly hinting the physics beyond the Standard Model (BSM). The recently announced results from muon $g-2$ collaboration, corresponding to 3.3$sigma$ deviation from Standard Model value (4.2$sigma$ in combination with previous measurement) are strengthening the need for new physics coupled to muons. In this letter, we propose a novel scenario in which Standard Model (SM) is augmented by an axion-like particle (ALP) and vector-like fermions. We find that such a model admits an excellent interpretation of recent muon $g-2$ measurement through quantum process featuring ALP interacting with muons and newly introduced fermions. Previously proposed explanations with ALPs utilize interactions with photons and/or SM fermions. Therefore, in this letter we complement and extend such scenarios. We also discuss collider prospects for the model as well as the possibility that ALP is long lived or stable dark matter (DM) candidate.



قيم البحث

اقرأ أيضاً

The discrepancy between the muon $g-2$ measurement and the Standard Model prediction points to new physics around or below the weak scale. It is tantalizing to consider the loop effects of a heavy axion (in the general sense, also known as an axion-l ike particle) coupling to leptons and photons as an explanation for this discrepancy. We provide an updated analysis of the necessary couplings, including two-loop contributions, and find that the new physics operators point to an axion decay constant on the order of 10s of GeV. This poses major problems for such an explanation, as the axion couplings to leptons and photons must be generated at low scales. We outline some possibilities for how such couplings can arise, and find that these scenarios predict new charged matter at or below the weak scale and new scalars can mix with the Higgs boson, raising numerous phenomenological challenges. These scenarios also all predict additional contributions to the muon $g-2$ itself, calling the initial application of the axion effective theory into question. We conclude that there is little reason to favor an axion explanation of the muon $g-2$ measurement relative to other models postulating new weak-scale matter.
126 - Frederick Gray 2015
A new experiment at Fermilab will measure the anomalous magnetic moment of the muon with a precision of 140 parts per billion (ppb). This measurement is motivated by the results of the Brookhaven E821 experiment that were first released more than a d ecade ago, which reached a precision of 540 ppb. As the corresponding Standard Model predictions have been refined, the experimental and theoretical values have persistently differed by about 3 standard deviations. If the Brookhaven result is confirmed at Fermilab with this improved precision, it will constitute definitive evidence for physics beyond the Standard Model. The experiment observes the muon spin precession frequency in flight in a well-calibrated magnetic field; the improvement in precision will require both 20 times as many recorded muon decay events as in E821 and a reduction by a factor of 3 in the systematic uncertainties. This paper describes the current experimental status as well as the plans for the upgraded magnet, detector and storage ring systems that are being prepared for the start of beam data collection in 2017.
The Muon g-2 Experiment at Fermi National Accelerator Laboratory (FNAL) has measured the muon anomalous precession frequency $omega_a$ to an uncertainty of 434 parts per billion (ppb), statistical, and 56 ppb, systematic, with data collected in four storage ring configurations during its first physics run in 2018. When combined with a precision measurement of the magnetic field of the experiments muon storage ring, the precession frequency measurement determines a muon magnetic anomaly of $a_{mu}({rm FNAL}) = 116,592,040(54) times 10^{-11}$ (0.46 ppm). This article describes the multiple techniques employed in the reconstruction, analysis and fitting of the data to measure the precession frequency. It also presents the averaging of the results from the eleven separate determinations of omega_a, and the systematic uncertainties on the result.
There is a long standing discrepancy between the Standard Model prediction for the muon g-2 and the value measured by the Brookhaven E821 Experiment. At present the discrepancy stands at about three standard deviations, with a comparable accuracy bet ween experiment and theory. Two new proposals -- at Fermilab and J-PARC -- plan to improve the experimental uncertainty by a factor of 4, and it is expected that there will be a significant reduction in the uncertainty of the Standard Model prediction. I will review the status of the planned experiment at Fermilab, E989, which will analyse 21 times more muons than the BNL experiment and discuss how the systematic uncertainty will be reduced by a factor of 3 such that a precision of 0.14 ppm can be achieved.
571 - T. Albahri 2021
The Fermi National Accelerator Laboratory has measured the anomalous precession frequency $a^{}_mu = (g^{}_mu-2)/2$ of the muon to a combined precision of 0.46 parts per million with data collected during its first physics run in 2018. This paper doc uments the measurement of the magnetic field in the muon storage ring. The magnetic field is monitored by nuclear magnetic resonance systems and calibrated in terms of the equivalent proton spin precession frequency in a spherical water sample at 34.7$^circ$C. The measured field is weighted by the muon distribution resulting in $tilde{omega}^{}_p$, the denominator in the ratio $omega^{}_a$/$tilde{omega}^{}_p$ that together with known fundamental constants yields $a^{}_mu$. The reported uncertainty on $tilde{omega}^{}_p$ for the Run-1 data set is 114 ppb consisting of uncertainty contributions from frequency extraction, calibration, mapping, tracking, and averaging of 56 ppb, and contributions from fast transient fields of 99 ppb.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا