ﻻ يوجد ملخص باللغة العربية
The North American Nanohertz Observatory for Gravitational Waves (NANOGrav) has recently reported strong evidence for a stochastic common-spectrum process affecting the pulsar timing residuals in its 12.5-year data set. We demonstrate that this process admits an interpretation in terms of a stochastic gravitational-wave background emitted by a cosmic-string network in the early Universe. We study stable Nambu-Goto strings in dependence of their tension $Gmu$ and loop size $alpha$ and show that the entire viable parameter space will be probed by an array of future experiments.
Cosmic strings are generically predicted in many extensions of the Standard Model of particle physics. We propose a new avenue for detecting cosmic strings through their effect on the filamentary structure in the cosmic web. Using cosmological simula
We study the effect of weak lensing by cosmic (super-)strings on the higher-order statistics of the cosmic microwave background (CMB). A cosmic string segment is expected to cause weak lensing as well as an integrated Sachs-Wolfe (ISW) effect, the so
We present an analytic study of cosmic superconducting chiral string collisions in Minkowski space, applying the kinematic constraints that arise from the relevant generalization of the Nambu-Goto action. In particular, we revisit the solution for ch
Recent BICEP2 detection of low-multipole B-mode polarization anisotropy in the cosmic microwave background radiation supports the inflationary universe scenario and suggests a large inflaton field range. The latter feature can be achieved with axion
We compare the spectrum of the stochastic gravitational wave background produced in several models of cosmic strings with the common-spectrum process recently reported by NANOGrav. We discuss theoretical uncertainties in computing such a background,