ترغب بنشر مسار تعليمي؟ اضغط هنا

[abridged] We use the latest release of CIGALE, a galaxy SED fitting model relying on energy balance, to study the influence of an AGN in estimating both the SFR and stellar mass in galaxies, as well as the contribution of the AGN to the power output of the host. Using the galaxy formation SAM GALFORM, we create mock galaxy SEDs using realistic star formation histories (SFH) and add an AGN of Type 1, Type 2, or intermediate type whose contribution to the bolometric luminosity can be variable. We perform an SED fitting of these catalogues with CIGALE assuming three different SFHs: a single- and double-exponentially-decreasing, and a delayed SFH. Constraining thecontribution of an AGN to the LIR (fracAGN) is very challenging for fracAGN<20%, with uncertainties of ~5-30% for higher fractions depending on the AGN type, while FIR and sub-mm are essential. The AGN power has an impact on the estimation of $M_*$ in Type 1 and intermediate type AGNs but has no effect for galaxies hosting Type 2 AGNs. We find that in the absence of AGN emission, the best estimates of $M_*$ are obtained using the double-exponentially-decreasing model but at the expense of realistic ages of the stellar population. The delayed SFH model provides good estimates of $M_*$ and SFR, with a maximum offset of 10% as well as better estimates of the age. Our analysis shows that the underestimation of the SFR increases with fracAGN for Type 1 systems, as well as for low contributions of an intermediate AGN type, but it is quite insensitive to the emission of Type 2 AGNs up to fracAGN~45%. Similarly the UV emission is critical in accurately retrieving the $M_*$ for Type 1 and intermediate type AGN, and the SFR of all of the three AGN types. We show that the presence of AGN emission introduces a scatter to the SFR-$M_*$ main sequence relation derived from SED fitting, which is driven by the uncertainties on $M_*$.
We present spectra obtained with the Infrared Spectrograph (IRS) on the Spitzer Space Telescope of 33 K giants and 20 A dwarfs to assess their suitability as spectrophotometric standard stars. The K giants confirm previous findings that the strength of the SiO absorption band at 8 um increases for both later optical spectral classes and redder (B-V)_0 colors, but with considerable scatter. For K giants, the synthetic spectra underpredict the strengths of the molecular bands from SiO and OH. For these reasons, the assumed true spectra for K giants should be based on neither the assumption that molecular band strengths in the infrared can be predicted accurately from optical spectral class or color nor synthetric spectra. The OH bands in K giants grow stronger with cooler stellar temperatures, and they are stronger than predicted by synthetic spectra. As a group, A dwarfs are better behaved and more predictable than the K giants, but they are more likely to show red excesses from debris disks. No suitable A dwarfs were located in parts of the sky continuously observable from Spitzer, and with previous means of estimating the true spectra of K giants ruled out, it was necessary to use models of A dwarfs to calibrate spectra of K giants from observed spectral ratios of the two groups and then use the calibrated K giants as standards for the full database of infrared spectra from Spitzer. We also describe a lingering artifact that affects the spectra of faint blue sources at 24 um.
Luminous infrared galaxies are systems enshrouded in dust, which absorbs most of their optical/UV emission and re-radiates it in the mid- and far-infrared. Radio observations are largely unaffected by dust obscuration, enabling us to study the centra l regions of LIRGs in an unbiased manner. The main goal of this project is to examine how the radio properties of local LIRGs relate to their infrared spectral characteristics. Here we present an analysis of the radio continuum properties of a subset of the Great Observatories All-sky LIRG Survey (GOALS), which consists of 202 nearby systems (z<0.088). Our radio sample consists of 35 systems, or 46 individual galaxies, that were observed at both 1.49 and 8.44 GHz with the VLA with a resolution of about 1 arcsec (FWHM). The aim of the project is to use the radio imagery to probe the central kpc of these LIRGs in search of active galactic nuclei. We used the archival data at 1.49 and 8.44 GHz to create radio-spectral-index maps using the standard relation between flux density Sv and frequency v, S~v^-a, where a is the radio spectral index. By studying the spatial variations in a, we classified the objects as radio-AGN, radio-SB, and AGN/SB (a mixture). We identified the presence of an active nucleus using the radio morphology, deviations from the radio/infrared correlation, and spatially resolved spectral index maps, and then correlated this to the usual mid-infrared ([NeV]/[NeII] and [OIV]/[NeII] line ratios and EQW of the 6.2 um PAH feature) and optical (BPT diagram) AGN diagnostics. We find that 21 out of the 46 objects in our sample are radio-AGN, 9 are classified as starbursts (SB), and 16 are AGN/SB. After comparing to other AGN diagnostics we find 3 objects out of the 46 that are identified as AGN based on the radio analysis, but are not classified as such based on the mid-infrared and optical AGN diagnostics presented in this study.
We present Herschel/PACS observations of extended [CII]157.7{mu}m line emission detected on ~ 1 - 10 kpc scales in 60 local luminous infrared galaxies (LIRGs) from the Great Observatories All-sky LIRG Survey (GOALS). We find that most of the extra-nu clear emission show [CII]/FIR ratios >~ 4 x 10^-3, larger than the mean ratio seen in the nuclei, and similar to those found in the extended disks of normal star-forming galaxies and the diffuse inter-stellar medium (ISM) of our Galaxy. The [CII] deficits found in the most luminous local LIRGs are therefore restricted to their nuclei. There is a trend for LIRGs with warmer nuclei to show larger differences between their nuclear and extra-nuclear [CII]/FIR ratios. We find an anti-correlation between [CII]/FIR and the luminosity surface density, {Sigma}_IR, for the extended emission in the spatially-resolved galaxies. However, there is an offset between this trend and that found for the LIRG nuclei. We use this offset to derive a beam filling-factor for the star-forming regions within the LIRG disks of ~ 6 % relative to their nuclei. We confront the observed trend to photo-dissociation region (PDR) models and find that the slope of the correlation is much shallower than the model predictions. Finally, we compare the correlation found between [CII]/FIR and {Sigma}_IR with measurements of high-redshift starbursting IR-luminous galaxies.
We present the first results of a survey of the [CII]158um emission line in 241 luminous infrared galaxies (LIRGs) comprising the Great Observatories All-sky Survey (GOALS) sample, obtained with the PACS instrument on board Herschel. The [CII] lumino sities of the LIRGs in GOALS range from ~10^7 to 2x10^9 Lsun. We find that LIRGs show a tight correlation of [CII]/FIR with far-IR flux density ratios, with a strong negative trend spanning from ~10^-2 to 10^-4, as the average temperature of dust increases. We find correlations between the [CII]/FIR ratio and the strength of the 9.7um silicate absorption feature as well as with the luminosity surface density of the mid-IR emitting region (Sigma_MIR), suggesting that warmer, more compact starbursts have substantially smaller [CII]/FIR ratios. Pure star-forming (SF) LIRGs have a mean [CII]/FIR ~ 4x10^-3, while galaxies with low 6.2um PAH equivalent widths (EWs), indicative of the presence of active galactic nuclei (AGN), span the full range in [CII]/FIR. However, we show that even when only pure SF galaxies are considered, the [CII]/FIR ratio drops by an order of magnitude, from 10^-2 to 10^-3, with Sigma_MIR and Sigma_IR, implying that the [CII] luminosity is not a good indicator of the star formation rate (SFR) for most LIRGs, for it does not scale linearly with the warm dust emission. Moreover, even in LIRGs in which we detect an AGN in the mid-IR, the majority (2/3) of galaxies show [CII]/FIR >= 10^-3 typical of high 6.2um PAH EW sources, suggesting that most AGNs do not contribute significantly to the far-IR emission. We provide an empirical relation between the [CII]/FIR and the specific SFR (SSFR) for SF LIRGs. Finally, we present predictions for the starburst size based on the observed [CII] and far-IR luminosities which should be useful for comparing with results from future surveys of high-redshift galaxies with ALMA and CCAT.
We present a comprehensive study on the impact of the environment of compact galaxy groups on the evolution of their members using a multi-wavelength analysis, from the UV to the infrared, for a sample of 32 Hickson compact groups (HCGs) containing 1 35 galaxies. Fitting the SEDs of all galaxies with the state-of-the-art model of da Cunha (2008) we can accurately calculate their mass, SFR, and extinction, as well as estimate their infrared luminosity and dust content. We compare our findings with samples of field galaxies, early-stage interacting pairs, and cluster galaxies with similar data. We find that classifying the groups as dynamically old or young, depending on whether or not at least one quarter of their members are early-type systems, is physical and consistent with past classifications of HCGs based on their atomic gas content. [...ABRIDGED...] We also examine their SF properties, UV-optical and mid-IR colors, and we conclude that all the evidence point to an evolutionary scenario in which the effects of the group environment and the properties of the galaxy members are not instantaneous. Early on, the influence of close companions to group galaxies is similar to the one of galaxy pairs in the field. However, as the time progresses, the effects of tidal torques and minor merging, shape the morphology and star formation history of the group galaxies, leading to an increase of the fraction of early-type members and a rapid built up of the stellar mass in the remaining late-type galaxies.
158 - T. Diaz-Santos 2010
We present an analysis of the extended mid-infrared (MIR) emission of the Great Observatories All-Sky LIRG Survey (GOALS) sample based on 5-15um low resolution spectra obtained with the IRS on Spitzer. We calculate the fraction of extended emission a s a function of wavelength for the galaxies in the sample, FEE_lambda. We can identify 3 general types of FEE_lambda: one where it is constant, one where features due to emission lines and PAHs appear more extended than the continuum, and a third which is characteristic of sources with deep silicate absorption at 9.7um. More than 30% of the galaxies have a median FEE_lambda larger than 0.5 implying that at least half of their MIR emission is extended. Luminous Infrared Galaxies (LIRGs) display a wide range of FEE in their warm dust continuum (0<=FEE_13.2um<=0.85). The large values of FEE_13.2um that we find in many LIRGs suggest that their extended MIR continuum emission originates in scales up to 10kpc. The mean size of the LIRG cores at 13.2um is 2.6kpc. However, once the LIR of the systems reaches the threshold of ~10^11.8Lsun, all sources become clearly more compact, with FEE_13.2um<=0.2, and their cores are unresolved. Our estimated upper limit for the core size of ULIRGs is less than 1.5kpc. The analysis indicates that the compactness of systems with LIR>~10^11.25Lsun strongly increases in those classified as mergers in their final stage of interaction. The FEE_13.2um is also related to the contribution of an active galactic nucleus (AGN) to the MIR. Galaxies which are more AGN-dominated are less extended, independently of their LIR. We finally find that the extent of the MIR continuum emission is correlated with the far-IR IRAS log(f_60um/f_100um) color. This enables us to place a lower limit to the area in a galaxy from where the cold dust emission may originate, a prediction which can be tested soon with the Herschel Space Telescope.
233 - G.J. Stacey 2010
We have studied the molecular hydrogen energetics of the edge-on spiral galaxy NGC,891, using a 34-position map in the lowest three pure rotational H$_2$ lines observed with the Spitzer Infrared Spectrograph. The S(0), S(1), and S(2) lines are bright with an extinction corrected total luminosity of $sim2.8 times 10^{7}$ L$_{odot}$, or 0.09% of the total-infrared luminosity of NGC,891. The H$_2$ line ratios are nearly constant along the plane of the galaxy -- we do not observe the previously reported strong drop-off in the S(1)/S(0) line intensity ratio in the outer regions of the galaxy, so we find no evidence for the very massive cold CO-free molecular clouds invoked to explain the past observations. The H$_2$ level excitation temperatures increase monotonically indicating more than one component to the emitting gas. More than 99% of the mass is in the lowest excitation (T$_{ex}$ $sim$125 K) ``warm component. In the inner galaxy, the warm H$_2$ emitting gas is $sim$15% of the CO(1-0)-traced cool molecular gas, while in the outer regions the fraction is twice as high. This large mass of warm gas is heated by a combination of the far-UV photons from stars in photo-dissociation regions (PDRs) and the dissipation of turbulent kinetic energy. Including the observed far-infrared [OI] and [CII] fine-structure line emission and far-infrared continuum emission in a self-consistent manner to constrain the PDR models, we find essentially all of the S(0) and most (70%) of the S(1) line arises from low excitation PDRs, while most (80%) of the S(2) and the remainder of the S(1) line emission arises from low velocity microturbulent dissipation.
75 - T. Bitsakis 2010
Hickson Compact Groups (HCGs) are among the densest galaxy environments of the local universe. To examine the effects of the environment on the infrared properties of these systems, we present an analysis of Spitzer and ISO mid-infrared imaging as we ll as deep ground based near-infrared imaging of 14 HCGs containing a total of 69 galaxies. Based on mid-infrared color diagnostics we identify the galaxies which appear to host an active nucleus, while using a suite of templates, we fit the complete infrared spectral energy distribution for each group member. We compare our estimates of galaxy mass, star formation rate, total infrared luminosities, and specific star formation rates (sSFR) for our HCG sample, to samples of isolated galaxies and interacting pairs and find that overall there is no discernible difference among them. However, HCGs which can be considered as dynamically old, host late-type galaxies with a slightly lower sSFR than the one found in dynamically young groups. This could be attributed to multiple past interactions among the galaxies in old groups, that have led to the build up of their stellar mass. It is also consistent with our prediction for the presence of diffuse cold dust in the intergalactic medium of 9 of the dynamically old groups.
227 - V. Charmandaris 2009
We performed an analysis of the mid-infared properties of the 12micron Seyfert sample, a complete unbiased 12micron flux limited sample of local Seyfert galaxies selected from the IRAS Faint Source Catalog, based on low resolution spectra obtained wi th the Infrared Spectrograph (IRS) on-board Spitzer Space Telescope. A detailed presentation of this analysis is dicussed in Wu et al. (2009). We find that on average, the 15-30micron slope of the continuum is -0.85+/-0.61 for Seyfert 1s and -1.53+/-0.84 for Seyfert 2s, and there is substantial scatter in each type. Moreover, nearly 32% of Seyfert 1s, and 9% of Seyfert 2s, display a peak in the mid-infrared spectrum at 20micron, which is attributed to an additional hot dust component. The Polycyclic Aromatic Hydrocarbon (PAH) equivalent width decreases with increasing dust temperature, as indicated by the global infrared color of the host galaxies. However, no statistical difference in PAH equivalent width is detected between the two Seyfert types, 1 and 2, of the same bolometric luminosity. Finally, we propose a new method to estimate the AGN contribution to the integrated 12micron galaxy emission, by subtracting the star formation component in the Seyfert galaxies, making use of the tight correlation between PAH 11.2micron luminosity and 12micron luminosity for star forming galaxies.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا