ترغب بنشر مسار تعليمي؟ اضغط هنا

Extended [CII] Emission in Local Luminous Infrared Galaxies

121   0   0.0 ( 0 )
 نشر من قبل Tanio Diaz-Santos
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present Herschel/PACS observations of extended [CII]157.7{mu}m line emission detected on ~ 1 - 10 kpc scales in 60 local luminous infrared galaxies (LIRGs) from the Great Observatories All-sky LIRG Survey (GOALS). We find that most of the extra-nuclear emission show [CII]/FIR ratios >~ 4 x 10^-3, larger than the mean ratio seen in the nuclei, and similar to those found in the extended disks of normal star-forming galaxies and the diffuse inter-stellar medium (ISM) of our Galaxy. The [CII] deficits found in the most luminous local LIRGs are therefore restricted to their nuclei. There is a trend for LIRGs with warmer nuclei to show larger differences between their nuclear and extra-nuclear [CII]/FIR ratios. We find an anti-correlation between [CII]/FIR and the luminosity surface density, {Sigma}_IR, for the extended emission in the spatially-resolved galaxies. However, there is an offset between this trend and that found for the LIRG nuclei. We use this offset to derive a beam filling-factor for the star-forming regions within the LIRG disks of ~ 6 % relative to their nuclei. We confront the observed trend to photo-dissociation region (PDR) models and find that the slope of the correlation is much shallower than the model predictions. Finally, we compare the correlation found between [CII]/FIR and {Sigma}_IR with measurements of high-redshift starbursting IR-luminous galaxies.



قيم البحث

اقرأ أيضاً

We present an analysis of [OI]63, [OIII]88, [NII]122 and [CII]158 far-infrared (FIR) fine-structure line observations obtained with Herschel/PACS, for ~240 local luminous infrared galaxies (LIRGs) in the Great Observatories All-sky LIRG Survey (GOALS ). We find pronounced declines -deficits- of line-to-FIR-continuum emission for [NII]122, [OI]63 and [CII]158 as a function of FIR color and infrared luminosity surface density, $Sigma_{rm IR}$. The median electron density of the ionized gas in LIRGs, based on the [NII]122/[NII]205 ratio, is $n_{rm e}$ = 41 cm$^{-3}$. We find that the dispersion in the [CII]158 deficit of LIRGs is attributed to a varying fractional contribution of photo-dissociation-regions (PDRs) to the observed [CII]158 emission, f([CII]PDR) = [CII]PDR/[CII], which increases from ~60% to ~95% in the warmest LIRGs. The [OI]63/[CII]158PDR ratio is tightly correlated with the PDR gas kinetic temperature in sources where [OI]63 is not optically-thick or self-absorbed. For each galaxy, we derive the average PDR hydrogen density, $n_{rm H}$, and intensity of the interstellar radiation field, in units of G$_0$, and find G$_0$/$n_{rm H}$ ratios ~0.1-50 cm$^3$, with ULIRGs populating the upper end of the distribution. There is a relation between G$_0$/$n_{rm H}$ and $Sigma_{rm IR}$, showing a critical break at $Sigma_{rm IR}^{star}$ ~ 5 x 10$^{10}$ Lsun/kpc$^2$. Below $Sigma_{rm IR}^{star}$, G$_0$/$n_{rm H}$ remains constant, ~0.32 cm$^3$, and variations in $Sigma_{rm IR}$ are driven by the number density of star-forming regions within a galaxy, with no change in their PDR properties. Above $Sigma_{rm IR}^{star}$, G$_0$/$n_{rm H}$ increases rapidly with $Sigma_{rm IR}$, signaling a departure from the typical PDR conditions found in normal star-forming galaxies towards more intense/harder radiation fields and compact geometries typical of starbursting sources.
We present $HST$ narrow-band near-infrared imaging of Pa$alpha$ and Pa$beta$ emission of 48 local Luminous Infrared Galaxies (LIRGs) from the Great Observatories All-Sky LIRG Survey (GOALS). These data allow us to measure the properties of 810 spatia lly resolved star-forming regions (59 nuclei and 751 extra-nuclear clumps), and directly compare their properties to those found in both local and high-redshift star-forming galaxies. We find that in LIRGs, the star-forming clumps have radii ranging from $sim90-900$ pc and star formation rates (SFRs) of $sim1times10^{-3}$ to 10 M$_odot$yr$^{-1}$, with median values for extra-nuclear clumps of 170 pc and 0.03 M$_odot$yr$^{-1}$. The detected star-forming clumps are young, with a median stellar age of $8.7$ Myrs, and a median stellar mass of $5times10^{5}$ M$_odot$. The SFRs span the range of those found in normal local star-forming galaxies to those found in high-redshift star-forming galaxies at $rm{z}=1-3$. The luminosity function of the LIRG clumps has a flatter slope than found in lower-luminosity, star-forming galaxies, indicating a relative excess of luminous star-forming clumps. In order to predict the possible range of star-forming histories and gas fractions, we compare the star-forming clumps to those measured in the MassiveFIRE high-resolution cosmological simulation. The star-forming clumps in MassiveFIRE cover the same range of SFRs and sizes found in the local LIRGs and have total gas fractions that extend from 10 to 90%. If local LIRGs are similar to these simulated galaxies, we expect future observations with ALMA will find a large range of gas fractions, and corresponding star formation efficiencies, among the star-forming clumps in LIRGs.
The [CII] 158um fine-structure line is the brightest emission line observed in local star-forming galaxies. As a major coolant of the gas-phase interstellar medium, [CII] balances the heating, including that due to far-ultraviolet photons, which heat the gas via the photoelectric effect. However, the origin of [CII] emission remains unclear, because C+ can be found in multiple phases of the interstellar medium. Here we measure the fractions of [CII] emission originating in the ionized and neutral gas phases of a sample of nearby galaxies. We use the [NII] 205um fine-structure line to trace the ionized medium, thereby eliminating the strong density dependence that exists in the ratio of [CII]/[NII] 122um. Using the FIR [CII] and [NII] emission detected by the KINGFISH and Beyond the Peak Herschel programs, we show that 60-80% of [CII] emission originates from neutral gas. We find that the fraction of [CII] originating in the neutral medium has a weak dependence on dust temperature and the surface density of star formation, and a stronger dependence on the gas-phase metallicity. In metal-rich environments, the relatively cooler ionized gas makes substantially larger contributions to total [CII] emission than at low abundance, contrary to prior expectations. Approximate calibrations of this metallicity trend are provided.
We present the analysis of the integrated spectral energy distribution (SED) from the ultraviolet (UV) to the far-infrared and H$alpha$ of a sample of 29 local systems and individual galaxies with infrared (IR) luminosities between 10^11 Lsun and 10^ 11.8 Lsun. We have combined new narrow-band H$alpha$+[NII] and broad-band g, r optical imaging taken with the Nordic Optical Telescope (NOT), with archival GALEX, 2MASS, Spitzer, and Herschel data. The SEDs (photometry and integrated H$alpha$ flux) have been fitted with a modified version of the MAGPHYS code using stellar population synthesis models for the UV-near-IR range and thermal emission models for the IR emission taking into account the energy balance between the absorbed and re-emitted radiation. From the SED fits we derive the star-formation histories (SFH) of these galaxies. For nearly half of them the star-formation rate appears to be approximately constant during the last few Gyrs. In the other half, the current star-formation rate seems to be enhanced by a factor of 3-20 with respect to that occured ~1 Gyr ago. Objects with constant SFH tend to be more massive than starbursts and they are compatible with the expected properties of a main-sequence (M-S) galaxy. Likewise, the derived SFHs show that all our objects were M-S galaxies ~1 Gyr ago with stellar masses between 10^10.1 and 10^11.5 Msun. We also derived from our fits the average extinction (A_v=0.6-3 mag) and the polycyclic aromatic hydrocarbons (PAH) luminosity to L(IR) ratio (0.03-0.16). We combined the A_v with the total IR and H$alpha$ luminosities into a diagram which can be used to identify objects with rapidly changing (increasing or decreasing) SFR during the last 100 Myr.
Galactic outflows are known to consist of several gas phases, however, so far the connection between these multiple phases has been investigated little and only in a few objects. In this paper, we analyse MUSE/VLT data of 26 local (U)LIRGs and study their ionised and neutral atomic phases. We also include objects from the literature to obtain a total sample of 31 galaxies with spatially resolved multi-phase outflow information. We find that the ionized phase of the outflows has on average an electron density three times higher than the disc ($n_{rm e, disc}$ $sim$ 145 cm$^{-3}$ vs $n_{rm e, outflow}$ $sim$ 500 cm$^{-3}$), suggesting that cloud compression in the outflow is more important that cloud dissipation. We find that the difference in extinction between outflow and disc correlates with the outflow gas mass. Together with the analysis of the outflow velocities, this suggests that at least some of the outflows are associated with the ejection of dusty clouds from the disc. This may support models where radiation pressure on dust contributes to driving galactic outflows. The presence of dust in outflows is relevant for potential formation of molecules inside them. We combine our data with millimetre data to investigate the molecular phase. We find that the molecular phase accounts for more than 60 $%$ of the total mass outflow rate in most objects and this fraction is higher in AGN-dominated systems. The neutral atomic phase contributes of the order of 10 $%$, while the ionized phase is negligible. The ionized-to-molecular mass outflow rate declines slightly with AGN luminosity, although with a large scatter.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا