ترغب بنشر مسار تعليمي؟ اضغط هنا

Mid-IR properties of Seyferts: Spitzer/IRS spectroscopy of the IRAS 12micron Seyfert sample

252   0   0.0 ( 0 )
 نشر من قبل Vassilis Charmandaris
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English
 تأليف V. Charmandaris




اسأل ChatGPT حول البحث

We performed an analysis of the mid-infared properties of the 12micron Seyfert sample, a complete unbiased 12micron flux limited sample of local Seyfert galaxies selected from the IRAS Faint Source Catalog, based on low resolution spectra obtained with the Infrared Spectrograph (IRS) on-board Spitzer Space Telescope. A detailed presentation of this analysis is dicussed in Wu et al. (2009). We find that on average, the 15-30micron slope of the continuum is -0.85+/-0.61 for Seyfert 1s and -1.53+/-0.84 for Seyfert 2s, and there is substantial scatter in each type. Moreover, nearly 32% of Seyfert 1s, and 9% of Seyfert 2s, display a peak in the mid-infrared spectrum at 20micron, which is attributed to an additional hot dust component. The Polycyclic Aromatic Hydrocarbon (PAH) equivalent width decreases with increasing dust temperature, as indicated by the global infrared color of the host galaxies. However, no statistical difference in PAH equivalent width is detected between the two Seyfert types, 1 and 2, of the same bolometric luminosity. Finally, we propose a new method to estimate the AGN contribution to the integrated 12micron galaxy emission, by subtracting the star formation component in the Seyfert galaxies, making use of the tight correlation between PAH 11.2micron luminosity and 12micron luminosity for star forming galaxies.


قيم البحث

اقرأ أيضاً

We present 5-38um mid-infrared spectra at a spectral resolution of R~65-130 of a large sample of 22 starburst nuclei taken with the Infrared Spectrograph IRS on board the Spitzer Space Telescope. The spectra show a vast range in starburst SEDs. The s ilicate absorption ranges from essentially no absorption to heavily obscured systems with an optical depth of tau(9.8um)~5. The spectral slopes can be used to discriminate between starburst and AGN powered sources. The monochromatic continuum fluxes at 15um and 30um enable a remarkably accurate estimate of the total infrared luminosity of the starburst. We find that the PAH equivalent width is independent of the total starburst luminosity L_IR as both continuum and PAH feature scale proportionally. However, the luminosity of the 6.2um feature scales with L_IR and can be used to approximate the total infrared luminosity of the starburst. Although our starburst sample covers about a factor of ten difference in the [NeIII]/[NeII] ratio, we found no systematic correlation between the radiation field hardness and the PAH equivalent width or the 7.7um/11.3um PAH ratio. These results are based on spatially integrated diagnostics over an entire starburst region, and local variations may be ``averaged out. It is presumably due to this effect that unresolved starburst nuclei with significantly different global properties appear spectrally as rather similar members of one class of objects.
We present low-resolution 5.5-35 um spectra for 103 galaxies from the 12 um Seyfert sample, a complete unbiased 12 um flux limited sample of local Seyfert galaxies selected from the IRAS Faint Source Catalog, obtained with the Infrared Spectrograph ( IRS) on-board Spitzer Space Telescope. For 70 of the sources observed in the IRS mapping mode, uniformly extracted nuclear spectra are presented for the first time. We performed an analysis of the continuum emission, the strength of the Polycyclic Aromatic Hydrocarbon (PAH) and astronomical silicate features of the sources. We find that on average, the 15-30 um slope of the continuum is alpha_{15-30}=-0.85+-0.61 for Seyfert 1s and -1.53+-0.84 for Seyfert 2s, and there is substantial scatter in each type. Moreover, nearly 32% of Seyfert 1s, and 9% of Seyfert 2s, display a peak in the mid-infrared spectrum at 20 um, which is attributed to an additional hot dust component. The PAH equivalent width decreases with increasing dust temperature, asindicated by the global infrared color of the host galaxies. However, no statistical difference in PAH equivalent width is detected between the two Seyfert types, 1 and 2, of the same bolometric luminosity. The silicate features at 9.7 and 18um in Seyfert 1 galaxies are rather weak, while Seyfert 2s are more likely to display strong silicate absorption. Those Seyfert 2s with the highest silicate absorption also have high infrared luminosity and high absorption (hydrogen column density N_H>10^23 cm^-2 as measured from the X-rays. Finally, we propose a new method to estimate the AGN contribution to the integrated 12 um galaxy emission, by subtracting the star formation component in the Seyfert galaxies, making use of the tight correlation between PAH 11.2 um luminosity and 12 um luminosity for star forming galaxies.
60 - H.W.W. Spoon , L. Armus , J. Cami 2004
We report the detection of strong absorption and weak emission features in the 4--27 micron Spitzer-IRS spectrum of the distant ultraluminous infrared galaxy (ULIRG) IRAS F00183--7111 (z=0.327). The absorption features of CO2 and CO gas, water ice, h ydrocarbons and silicates are indicative of a strongly obscured (A[9.6]>=5.4; A[V]>=90) and complex line of sight through both hot diffuse ISM and shielded cold molecular clouds towards the nuclear power source. From the profile of the 4.67 micron CO fundamental vibration mode we deduce that the absorbing gas is dense (n~10^6 cm^-3) and warm (720 K) and has a CO column density of ~10^19.5 cm^-2, equivalent to N[H]~10^23.5 cm^-2. The high temperature and density, as well as the small infered size (<0.03pc), locates this absorbing gas close to the power source of this region. Weak emission features of molecular hydrogen, PAHs and Ne+, likely associated with star formation, are detected against the 9.7 micron silicate feature, indicating an origin away from the absorbing region. Based on the 11.2 micron PAH flux, we estimate the star formation component to be responsible for up to 30% of the IR luminosity of the system. While our mid-infrared spectrum shows no tell-tale signs of AGN activity, the similarities to the mid-infrared spectra of deeply obscured sources (e.g. NGC4418) and AGN hot dust (e.g. NGC1068), as well as evidence from other wavelength regions, suggest that the power source hiding behind the optically thick dust screen may well be a buried AGN.
157 - H. Inami 2013
We present the data and our analysis of MIR fine-structure emission lines detected in Spitzer/IRS high-res spectra of 202 local LIRGs observed as part of the GOALS project. We detect emission lines of [SIV], [NeII], [NeV], [NeIII], [SIII]18.7, [OIV], [FeII], [SIII]33.5, and [SiII]. Over 75% of our galaxies are classified as starburst (SB) sources in the MIR. We compare ratios of the emission line fluxes to stellar photo- and shock-ionization models to constrain the gas properties in the SB nuclei. Comparing the [SIV]/[NeII] and [NeIII]/[NeII] ratios to the Starburst99-Mappings III models with an instantaneous burst history, the line ratios suggest that the SB in our LIRGs have ages of 1-4.5Myr, metallicities of 1-2Z_sun, and ionization parameters of 2-8e7cm/s. Based on the [SIII]/[SIII] ratios, the electron density in LIRG nuclei has a median electron density of ~300cm-3 for sources above the low density limit. We also find that strong shocks are likely present in 10 SB sources. A significant fraction of the GOALS sources have resolved neon lines and 5 show velocity differences of >200km/s in [NeIII] or [NeV] relative to [NeII]. Furthermore, 6 SB and 5 AGN LIRGs show a trend of increasing line width with ionization potential, suggesting the possibility of a compact energy source and stratified ISM in their nuclei. We confirm a strong correlation between the [NeII]+[NeIII] emission, as well as [SIII]33.5, with both the IR luminosity and the 24um warm dust emission measured from the spectra. Finally, we find no correlation between the hardness of the radiation field or the line width and the ratio of the total IR to 8um emission (IR8). This may be because the IR luminosity and the MIR fine-structure lines are sensitive to different timescales over the SB, or that IR8 is more sensitive to the geometry of the warm dust region than the radiation field producing the HII region emission.
We present a comprehensive study on the impact of the environment of compact galaxy groups on the evolution of their members using a multi-wavelength analysis, from the UV to the infrared, for a sample of 32 Hickson compact groups (HCGs) containing 1 35 galaxies. Fitting the SEDs of all galaxies with the state-of-the-art model of da Cunha (2008) we can accurately calculate their mass, SFR, and extinction, as well as estimate their infrared luminosity and dust content. We compare our findings with samples of field galaxies, early-stage interacting pairs, and cluster galaxies with similar data. We find that classifying the groups as dynamically old or young, depending on whether or not at least one quarter of their members are early-type systems, is physical and consistent with past classifications of HCGs based on their atomic gas content. [...ABRIDGED...] We also examine their SF properties, UV-optical and mid-IR colors, and we conclude that all the evidence point to an evolutionary scenario in which the effects of the group environment and the properties of the galaxy members are not instantaneous. Early on, the influence of close companions to group galaxies is similar to the one of galaxy pairs in the field. However, as the time progresses, the effects of tidal torques and minor merging, shape the morphology and star formation history of the group galaxies, leading to an increase of the fraction of early-type members and a rapid built up of the stellar mass in the remaining late-type galaxies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا