ﻻ يوجد ملخص باللغة العربية
Hickson Compact Groups (HCGs) are among the densest galaxy environments of the local universe. To examine the effects of the environment on the infrared properties of these systems, we present an analysis of Spitzer and ISO mid-infrared imaging as well as deep ground based near-infrared imaging of 14 HCGs containing a total of 69 galaxies. Based on mid-infrared color diagnostics we identify the galaxies which appear to host an active nucleus, while using a suite of templates, we fit the complete infrared spectral energy distribution for each group member. We compare our estimates of galaxy mass, star formation rate, total infrared luminosities, and specific star formation rates (sSFR) for our HCG sample, to samples of isolated galaxies and interacting pairs and find that overall there is no discernible difference among them. However, HCGs which can be considered as dynamically old, host late-type galaxies with a slightly lower sSFR than the one found in dynamically young groups. This could be attributed to multiple past interactions among the galaxies in old groups, that have led to the build up of their stellar mass. It is also consistent with our prediction for the presence of diffuse cold dust in the intergalactic medium of 9 of the dynamically old groups.
We present a comprehensive study on the impact of the environment of compact galaxy groups on the evolution of their members using a multi-wavelength analysis, from the UV to the infrared, for a sample of 32 Hickson compact groups (HCGs) containing 1
I present observations of the Hickson Compact Group 88 (HCG88) obtained during the commissioning of a new 28-inch telescope at the Wise Observatory. This galaxy group was advertised to be non-interacting, or to be in a very early interaction stage, b
We present Swift UVOT (1600-3000A) 3-band photometry for 41 galaxies in 11 nearby (<4500km/s) Hickson Compact Groups (HCGs) of galaxies. We use the uvw2-band (2000A) to estimate the dust-unobscured component, SFR_UV, of the total star-formation rate,
Compact groups of galaxies provide conditions similar to those experienced by galaxies in the earlier universe. Recent work on compact groups has led to the discovery of a dearth of mid-infrared transition galaxies (MIRTGs) in IRAC (3.6 - 8.0 micron)
We investigate the properties of the B-band Tully-Fisher (T-F) relation for 25 compact group galaxies, using Vmax derived from 2-D velocity maps. Our main result is that the majority of the Hickson Compact Group galaxies lie on the T-F relation. Howe