ترغب بنشر مسار تعليمي؟ اضغط هنا

Unmanned aerial vehicles (UAVs) are expected to be an integral part of wireless networks. In this paper, we aim to find collision-free paths for multiple cellular-connected UAVs, while satisfying requirements of connectivity with ground base stations (GBSs) in the presence of a dynamic jammer. We first formulate the problem as a sequential decision making problem in discrete domain, with connectivity, collision avoidance, and kinematic constraints. We, then, propose an offline temporal difference (TD) learning algorithm with online signal-to-interference-plus-noise ratio (SINR) mapping to solve the problem. More specifically, a value network is constructed and trained offline by TD method to encode the interactions among the UAVs and between the UAVs and the environment; and an online SINR mapping deep neural network (DNN) is designed and trained by supervised learning, to encode the influence and changes due to the jammer. Numerical results show that, without any information on the jammer, the proposed algorithm can achieve performance levels close to that of the ideal scenario with the perfect SINR-map. Real-time navigation for multi-UAVs can be efficiently performed with high success rates, and collisions are avoided.
Deep learning provides powerful means to learn from spectrum data and solve complex tasks in 5G and beyond such as beam selection for initial access (IA) in mmWave communications. To establish the IA between the base station (e.g., gNodeB) and user e quipment (UE) for directional transmissions, a deep neural network (DNN) can predict the beam that is best slanted to each UE by using the received signal strengths (RSSs) from a subset of possible narrow beams. While improving the latency and reliability of beam selection compared to the conventional IA that sweeps all beams, the DNN itself is susceptible to adversarial attacks. We present an adversarial attack by generating adversarial perturbations to manipulate the over-the-air captured RSSs as the input to the DNN. This attack reduces the IA performance significantly and fools the DNN into choosing the beams with small RSSs compared to jamming attacks with Gaussian or uniform noise.
Reinforcement learning (RL) for network slicing is considered in the 5G radio access network, where the base station, gNodeB, allocates resource blocks (RBs) to the requests of user equipments and maximizes the total reward of accepted requests over time. Based on adversarial machine learning, a novel over-the-air attack is introduced to manipulate the RL algorithm and disrupt 5G network slicing. Subject to an energy budget, the adversary observes the spectrum and builds its own RL-based surrogate model that selects which RBs to jam with the objective of maximizing the number of failed network slicing requests due to jammed RBs. By jamming the RBs, the adversary reduces the RL algorithms reward. As this reward is used as the input to update the RL algorithm, the performance does not recover even after the adversary stops jamming. This attack is evaluated in terms of the recovery time and the (maximum and total) reward loss, and it is shown to be much more effective than benchmark (random and myopic) jamming attacks. Different reactive and proactive defense mechanisms (protecting the RL algorithms updates or misleading the adversarys learning process) are introduced to show that it is viable to defend 5G network slicing against this attack.
Machine learning provides automated means to capture complex dynamics of wireless spectrum and support better understanding of spectrum resources and their efficient utilization. As communication systems become smarter with cognitive radio capabiliti es empowered by machine learning to perform critical tasks such as spectrum awareness and spectrum sharing, they also become susceptible to new vulnerabilities due to the attacks that target the machine learning applications. This paper identifies the emerging attack surface of adversarial machine learning and corresponding attacks launched against wireless communications in the context of 5G systems. The focus is on attacks against (i) spectrum sharing of 5G communications with incumbent users such as in the Citizens Broadband Radio Service (CBRS) band and (ii) physical layer authentication of 5G User Equipment (UE) to support network slicing. For the first attack, the adversary transmits during data transmission or spectrum sensing periods to manipulate the signal-level inputs to the deep learning classifier that is deployed at the Environmental Sensing Capability (ESC) to support the 5G system. For the second attack, the adversary spoofs wireless signals with the generative adversarial network (GAN) to infiltrate the physical layer authentication mechanism based on a deep learning classifier that is deployed at the 5G base station. Results indicate major vulnerabilities of 5G systems to adversarial machine learning. To sustain the 5G system operations in the presence of adversaries, a defense mechanism is presented to increase the uncertainty of the adversary in training the surrogate model used for launching its subsequent attacks.
We present DeepIA, a deep neural network (DNN) framework for enabling fast and reliable initial access for AI-driven beyond 5G and 6G millimeter (mmWave) networks. DeepIA reduces the beam sweep time compared to a conventional exhaustive search-based IA process by utilizing only a subset of the available beams. DeepIA maps received signal strengths (RSSs) obtained from a subset of beams to the beam that is best oriented to the receiver. In both line of sight (LoS) and non-line of sight (NLoS) conditions, DeepIA reduces the IA time and outperforms the conventional IAs beam prediction accuracy. We show that the beam prediction accuracy of DeepIA saturates with the number of beams used for IA and depends on the particular selection of the beams. In LoS conditions, the selection of the beams is consequential and improves the accuracy by up to 70%. In NLoS situations, it improves accuracy by up to 35%. We find that, averaging multiple RSS snapshots further reduces the number of beams needed and achieves more than 95% accuracy in both LoS and NLoS conditions. Finally, we evaluate the beam prediction time of DeepIA through embedded hardware implementation and show the improvement over the conventional beam sweeping.
We consider a wireless communication network with an adaptive scheme to select the number of packets to be admitted and encoded for each transmission, and characterize the information timeliness. For a network of erasure channels and discrete time, w e provide closed form expressions for the Average and Peak Age of Information (AoI) as functions of admission control and adaptive coding parameters, the feedback delay, and the maximum feasible end-to-end rate that depends on channel conditions and network topology. These new results guide the system design for robust improvements of the AoI when transmitting time sensitive information in the presence of topology and channel changes. We illustrate the benefits of using adaptive packet coding to improve information timeliness by characterizing the network performance with respect to the AoI along with its relationship to throughput (rate of successfully decoded packets at the destination) and per-packet delay. We show that significant AoI performance gains can be obtained in comparison to the uncoded case, and that these gains are robust to network variations as channel conditions and network topology change.
We consider a wireless communication system that consists of a background emitter, a transmitter, and an adversary. The transmitter is equipped with a deep neural network (DNN) classifier for detecting the ongoing transmissions from the background em itter and transmits a signal if the spectrum is idle. Concurrently, the adversary trains its own DNN classifier as the surrogate model by observing the spectrum to detect the ongoing transmissions of the background emitter and generate adversarial attacks to fool the transmitter into misclassifying the channel as idle. This surrogate model may differ from the transmitters classifier significantly because the adversary and the transmitter experience different channels from the background emitter and therefore their classifiers are trained with different distributions of inputs. This system model may represent a setting where the background emitter is a primary user, the transmitter is a secondary user, and the adversary is trying to fool the secondary user to transmit even though the channel is occupied by the primary user. We consider different topologies to investigate how different surrogate models that are trained by the adversary (depending on the differences in channel effects experienced by the adversary) affect the performance of the adversarial attack. The simulation results show that the surrogate models that are trained with different distributions of channel-induced inputs severely limit the attack performance and indicate that the transferability of adversarial attacks is neither readily available nor straightforward to achieve since surrogate models for wireless applications may significantly differ from the target model depending on channel effects.
The paper presents a reinforcement learning solution to dynamic resource allocation for 5G radio access network slicing. Available communication resources (frequency-time blocks and transmit powers) and computational resources (processor usage) are a llocated to stochastic arrivals of network slice requests. Each request arrives with priority (weight), throughput, computational resource, and latency (deadline) requirements, and if feasible, it is served with available communication and computational resources allocated over its requested duration. As each decision of resource allocation makes some of the resources temporarily unavailable for future, the myopic solution that can optimize only the current resource allocation becomes ineffective for network slicing. Therefore, a Q-learning solution is presented to maximize the network utility in terms of the total weight of granted network slicing requests over a time horizon subject to communication and computational constraints. Results show that reinforcement learning provides major improvements in the 5G network utility relative to myopic, random, and first come first served solutions. While reinforcement learning sustains scalable performance as the number of served users increases, it can also be effectively used to assign resources to network slices when 5G needs to share the spectrum with incumbent users that may dynamically occupy some of the frequency-time blocks.
We consider a wireless communication system, where a transmitter sends signals to a receiver with different modulation types while the receiver classifies the modulation types of the received signals using its deep learning-based classifier. Concurre ntly, an adversary transmits adversarial perturbations using its multiple antennas to fool the classifier into misclassifying the received signals. From the adversarial machine learning perspective, we show how to utilize multiple antennas at the adversary to improve the adversarial (evasion) attack performance. Two main points are considered while exploiting the multiple antennas at the adversary, namely the power allocation among antennas and the utilization of channel diversity. First, we show that multiple independent adversaries, each with a single antenna cannot improve the attack performance compared to a single adversary with multiple antennas using the same total power. Then, we consider various ways to allocate power among multiple antennas at a single adversary such as allocating power to only one antenna, and proportional or inversely proportional to the channel gain. By utilizing channel diversity, we introduce an attack to transmit the adversarial perturbation through the channel with the largest channel gain at the symbol level. We show that this attack reduces the classifier accuracy significantly compared to other attacks under different channel conditions in terms of channel variance and channel correlation across antennas. Also, we show that the attack success improves significantly as the number of antennas increases at the adversary that can better utilize channel diversity to craft adversarial attacks.
Existing communication systems exhibit inherent limitations in translating theory to practice when handling the complexity of optimization for emerging wireless applications with high degrees of freedom. Deep learning has a strong potential to overco me this challenge via data-driven solutions and improve the performance of wireless systems in utilizing limited spectrum resources. In this chapter, we first describe how deep learning is used to design an end-to-end communication system using autoencoders. This flexible design effectively captures channel impairments and optimizes transmitter and receiver operations jointly in single-antenna, multiple-antenna, and multiuser communications. Next, we present the benefits of deep learning in spectrum situation awareness ranging from channel modeling and estimation to signal detection and classification tasks. Deep learning improves the performance when the model-based methods fail. Finally, we discuss how deep learning applies to wireless communication security. In this context, adversarial machine learning provides novel means to launch and defend against wireless attacks. These applications demonstrate the power of deep learning in providing novel means to design, optimize, adapt, and secure wireless communications.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا