ترغب بنشر مسار تعليمي؟ اضغط هنا

How to Attack and Defend 5G Radio Access Network Slicing with Reinforcement Learning

113   0   0.0 ( 0 )
 نشر من قبل Yi Shi
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Reinforcement learning (RL) for network slicing is considered in the 5G radio access network, where the base station, gNodeB, allocates resource blocks (RBs) to the requests of user equipments and maximizes the total reward of accepted requests over time. Based on adversarial machine learning, a novel over-the-air attack is introduced to manipulate the RL algorithm and disrupt 5G network slicing. Subject to an energy budget, the adversary observes the spectrum and builds its own RL-based surrogate model that selects which RBs to jam with the objective of maximizing the number of failed network slicing requests due to jammed RBs. By jamming the RBs, the adversary reduces the RL algorithms reward. As this reward is used as the input to update the RL algorithm, the performance does not recover even after the adversary stops jamming. This attack is evaluated in terms of the recovery time and the (maximum and total) reward loss, and it is shown to be much more effective than benchmark (random and myopic) jamming attacks. Different reactive and proactive defense mechanisms (protecting the RL algorithms updates or misleading the adversarys learning process) are introduced to show that it is viable to defend 5G network slicing against this attack.

قيم البحث

اقرأ أيضاً

The paper presents a reinforcement learning solution to dynamic resource allocation for 5G radio access network slicing. Available communication resources (frequency-time blocks and transmit powers) and computational resources (processor usage) are a llocated to stochastic arrivals of network slice requests. Each request arrives with priority (weight), throughput, computational resource, and latency (deadline) requirements, and if feasible, it is served with available communication and computational resources allocated over its requested duration. As each decision of resource allocation makes some of the resources temporarily unavailable for future, the myopic solution that can optimize only the current resource allocation becomes ineffective for network slicing. Therefore, a Q-learning solution is presented to maximize the network utility in terms of the total weight of granted network slicing requests over a time horizon subject to communication and computational constraints. Results show that reinforcement learning provides major improvements in the 5G network utility relative to myopic, random, and first come first served solutions. While reinforcement learning sustains scalable performance as the number of served users increases, it can also be effectively used to assign resources to network slices when 5G needs to share the spectrum with incumbent users that may dynamically occupy some of the frequency-time blocks.
We demonstrate how the 5G network slicing model can be extended to address data security requirements. In this work we demonstrate two different slice configurations, with different encryption requirements, representing two diverse use-cases for 5G n etworking: namely, an enterprise application hosted at a metro network site, and a content delivery network. We create a modified software-defined networking (SDN) orchestrator which calculates and provisions network slices according to the requirements, including encryption backed by quantum key distribution (QKD), or other methods. Slices are automatically provisioned by SDN orchestration of network resources, allowing selection of encrypted links as appropriate, including those which use standard Diffie-Hellman key exchange, QKD and quantum-resistant algorithms (QRAs), as well as no encryption at all. We show that the set-up and tear-down times of the network slices takes of the order of 1-2 minutes, which is an order of magnitude improvement over manually provisioning a link today.
Network slicing is born as an emerging business to operators, by allowing them to sell the customized slices to various tenants at different prices. In order to provide better-performing and cost-efficient services, network slicing involves challengi ng technical issues and urgently looks forward to intelligent innovations to make the resource management consistent with users activities per slice. In that regard, deep reinforcement learning (DRL), which focuses on how to interact with the environment by trying alternative actions and reinforcing the tendency actions producing more rewarding consequences, is assumed to be a promising solution. In this paper, after briefly reviewing the fundamental concepts of DRL, we investigate the application of DRL in solving some typical resource management for network slicing scenarios, which include radio resource slicing and priority-based core network slicing, and demonstrate the advantage of DRL over several competing schemes through extensive simulations. Finally, we also discuss the possible challenges to apply DRL in network slicing from a general perspective.
Radio access network (RAN) slicing is an important part of network slicing in 5G. The evolving network architecture requires the orchestration of multiple network resources such as radio and cache resources. In recent years, machine learning (ML) tec hniques have been widely applied for network slicing. However, most existing works do not take advantage of the knowledge transfer capability in ML. In this paper, we propose a transfer reinforcement learning (TRL) scheme for joint radio and cache resources allocation to serve 5G RAN slicing.We first define a hierarchical architecture for the joint resources allocation. Then we propose two TRL algorithms: Q-value transfer reinforcement learning (QTRL) and action selection transfer reinforcement learning (ASTRL). In the proposed schemes, learner agents utilize the expert agents knowledge to improve their performance on target tasks. The proposed algorithms are compared with both the model-free Q-learning and the model-based priority proportional fairness and time-to-live (PPF-TTL) algorithms. Compared with Q-learning, QTRL and ASTRL present 23.9% lower delay for Ultra Reliable Low Latency Communications slice and 41.6% higher throughput for enhanced Mobile Broad Band slice, while achieving significantly faster convergence than Q-learning. Moreover, 40.3% lower URLLC delay and almost twice eMBB throughput are observed with respect to PPF-TTL.
Adversarial training provides a principled approach for training robust neural networks. From an optimization perspective, adversarial training is essentially solving a bilevel optimization problem. The leader problem is trying to learn a robust clas sifier, while the follower problem is trying to generate adversarial samples. Unfortunately, such a bilevel problem is difficult to solve due to its highly complicated structure. This work proposes a new adversarial training method based on a generic learning-to-learn (L2L) framework. Specifically, instead of applying existing hand-designed algorithms for the inner problem, we learn an optimizer, which is parametrized as a convolutional neural network. At the same time, a robust classifier is learned to defense the adversarial attack generated by the learned optimizer. Experiments over CIFAR-10 and CIFAR-100 datasets demonstrate that L2L outperforms existing adversarial training methods in both classification accuracy and computational efficiency. Moreover, our L2L framework can be extended to generative adversarial imitation learning and stabilize the training.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا