ترغب بنشر مسار تعليمي؟ اضغط هنا

We establish a local model for the moduli space of holomorphic symplectic structures with logarithmic poles, near the locus of structures whose polar divisor is normal crossings. In contrast to the case without poles, the moduli space is singular: wh en the cohomology class of a symplectic structure satisfies certain linear equations with integer coefficients, its polar divisor can be partially smoothed, yielding adjacent irreducible components of the moduli space that correspond to possibly non-normal crossings structures. These components are indexed by combinatorial data we call smoothing diagrams, and amenable to algorithmic classification. Applying the theory to four-dimensional projective space, we obtain a total of 40 irreducible components of the moduli space, most of which are new. Our main technique is a detailed analysis of the relevant deformation complex (the Poisson cohomology) as an object of the constructible derived category.
In this article we consider the connected component of the identity of $G$-character varieties of compact Riemann surfaces of genus $g > 0$, for connected complex reductive groups $G$ of type $A$ (e.g., $SL_n$ and $GL_n$). We show that these varietie s are symplectic singularities and classify which admit symplectic resolutions. The classification reduces to the semi-simple case, where we show that a resolution exists if and only if either $g=1$ and $G$ is a product of special linear groups of any rank and copies of the group $PGL_2$, or if $g=2$ and $G = (SL_2)^m$ for some $m$.
We prove that multiplicative preprojective algebras, defined by Crawley-Boevey and Shaw, are 2-Calabi-Yau algebras, in the case of quivers containing unoriented cycles. If the quiver is not itself a cycle, we show that the center is trivial, and henc e the Calabi-Yau structure is unique. If the quiver is a cycle, we show that the algebra is a non-commutative crepant resolution of its center, the ring of functions on the corresponding multiplicative quiver variety with a type A surface singularity. We also prove that the
We study the algebraic symplectic geometry of multiplicative quiver varieties, which are moduli spaces of representations of certain quiver algebras, introduced by Crawley-Boevey and Shaw, called multiplicative preprojective algebras. They are multip licative analogues of Nakajima quiver varieties. They include character varieties of (open) Riemann surfaces fixing conjugacy class closures of the monodromies around punctures, when the quiver is crab-shaped. We prove that, under suitable hypotheses on the dimension vector of the representations, or the conjugacy classes of monodromies in the character variety case, the normalisations of such moduli spaces are symplectic singularities and that the existence of a symplectic resolution depends on a combinatorial condition on the quiver and the dimension vector. These results are analogous to those obtained by Bellamy and the first author in the ordinary quiver variety case, and for character varieties of closed Riemann surfaces. At the end of the paper, we outline some conjectural generalisations to moduli spaces of objects in 2-Calabi--Yau categories.
We study the cup product on the Hochschild cohomology of the stack quotient [X/G] of a smooth quasi-projective variety X by a finite group G. More specifically, we construct a G-equivariant sheaf of graded algebras on X whose G-invariant global secti ons recover the associated graded algebra of the Hochschild cohomology of [X/G], under a natural filtration. This sheaf is an algebra over the polyvector fields T^{poly}_X on X, and is generated as a T^{poly}_X-algebra by the sum of the determinants det(N_{X^g}) of the normal bundles of the fixed loci in X. We employ our understanding of Hochschild cohomology to conclude that the analog of Kontsevichs formality theorem, for the cup product, does not hold for Deligne--Mumford stacks in general. We discuss relationships with orbifold cohomology, extending Ruans cohomological conjectures. This employs a trivialization of the determinants in the case of a symplectic group action on a symplectic variety X, which requires (for the cup product) a nontrivial normalization missing in previous literature.
Recently, Herbig--Schwarz--Seaton have shown that $3$-large representations of a reductive group $G$ give rise to a large class of symplectic singularities via Hamiltonian reduction. We show that these singularities are always terminal. We show that they are $mathbb{Q}$-factorial if and only if $G$ has finite abelianization. When $G$ is connected and semi-simple, we show they are actually locally factorial. As a consequence, the symplectic singularities do not admit symplectic resolutions when $G$ is semi-simple. We end with some open questions.
117 - Brent Pym , Travis Schedler 2017
We introduce a natural nondegeneracy condition for Poisson structures, called holonomicity, which is closely related to the notion of a log symplectic form. Holonomic Poisson manifolds are privileged by the fact that their deformation spaces are as f inite-dimensional as one could ever hope: the corresponding derived deformation complex is a perverse sheaf. We develop some basic structural features of these manifolds, highlighting the role played by the divergence of Hamiltonian vector fields. As an application, we establish the deformation-invariance of certain families of Poisson manifolds defined by Feigin and Odesskii, along with the elliptic algebras that quantize them.
We survey the theory of Poisson traces (or zeroth Poisson homology) developed by the authors in a series of recent papers. The goal is to understand this subtle invariant of (singular) Poisson varieties, conditions for it to be finite-dimensional, it s relationship to the geometry and topology of symplectic resolutions, and its applications to quantizations. The main technique is the study of a canonical D-module on the variety. In the case the variety has finitely many symplectic leaves (such as for symplectic singularities and Hamiltonian reductions of symplectic vector spaces by reductive groups), the D-module is holonomic, and hence the space of Poisson traces is finite-dimensional. As an application, there are finitely many irreducible finite-dimensional representations of every quantization of the variety. Conjecturally, the D-module is the pushforward of the canonical D-module under every symplectic resolution of singularities, which implies that the space of Poisson traces is dual to the top cohomology of the resolution. We explain many examples where the conjecture is proved, such as symmetric powers of du Val singularities and symplectic surfaces and Slodowy slices in the nilpotent cone of a semisimple Lie algebra. We compute the D-module in the case of surfaces with isolated singularities, and show it is not always semisimple. We also explain generalizations to arbitrary Lie algebras of vector fields, connections to the Bernstein-Sato polynomial, relations to two-variable special polynomials such as Kostka polynomials and Tutte polynomials, and a conjectural relationship with deformations of symplectic resolutions. In the appendix we give a brief recollection of the theory of D-modules on singular varieties that we require.
We study the hyperplane arrangements associated, via the minimal model programme, to symplectic quotient singularities. We show that this hyperplane arrangement equals the arrangement of CM-hyperplanes coming from the representation theory of restric ted rational Cherednik algebras. We explain some of the interesting consequences of this identification for the representation theory of restricted rational Cherednik algebras. We also show that the Calogero-Moser space is smooth if and only if the Calogero-Moser families are trivial. We describe the arrangements of CM-hyperplanes associated to several exceptional complex reflection groups, some of which are free.
Let f be a quasi-homogeneous polynomial with an isolated singularity. We compute the length of the D-modules $Df^c/Df^{c+1}$ generated by complex powers of f in terms of the Hodge filtration on the top cohomology of the Milnor fiber. For 1/f we obtai n one more than the reduced genus of the singularity. We conjecture that this holds without the quasi-homogeneous assumption. We also deduce that the aforementioned quotient is nonzero when c is a root of the b-function of f (which Saito recently showed fails to hold in the inhomogeneous case). We obtain these results by comparing these D-modules to those defined by Etingof and the second author which represent invariants under Hamiltonian flow.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا