ﻻ يوجد ملخص باللغة العربية
Let f be a quasi-homogeneous polynomial with an isolated singularity. We compute the length of the D-modules $Df^c/Df^{c+1}$ generated by complex powers of f in terms of the Hodge filtration on the top cohomology of the Milnor fiber. For 1/f we obtain one more than the reduced genus of the singularity. We conjecture that this holds without the quasi-homogeneous assumption. We also deduce that the aforementioned quotient is nonzero when c is a root of the b-function of f (which Saito recently showed fails to hold in the inhomogeneous case). We obtain these results by comparing these D-modules to those defined by Etingof and the second author which represent invariants under Hamiltonian flow.
The aim of this Note is to specify the links between the three kinds of Lisbon integrals, trace functions and trace forms with the corresponding D--modules.
We survey the theory of Poisson traces (or zeroth Poisson homology) developed by the authors in a series of recent papers. The goal is to understand this subtle invariant of (singular) Poisson varieties, conditions for it to be finite-dimensional, it
On a complex manifold, the embedding of the category of regular holonomic D-modules into that of holonomic D-modules has a left quasi-inverse functor $mathcal{M}mapstomathcal{M}_{mathrm{reg}}$, called regularization. Recall that $mathcal{M}_{mathrm{r
For modules over group rings we introduce the following numerical parameter. We say that a module A over a ring R has finite r-generator property if each f.g. (finitely generated) R-submodule of A can be generated exactly by r elements and there exis
We introduce a concept of a fractional-derivatives series and prove that any linear partial differential equation in two independent variables has a fractional-derivatives series solution with coefficients from a differentially closed field of zero c