ﻻ يوجد ملخص باللغة العربية
We establish a local model for the moduli space of holomorphic symplectic structures with logarithmic poles, near the locus of structures whose polar divisor is normal crossings. In contrast to the case without poles, the moduli space is singular: when the cohomology class of a symplectic structure satisfies certain linear equations with integer coefficients, its polar divisor can be partially smoothed, yielding adjacent irreducible components of the moduli space that correspond to possibly non-normal crossings structures. These components are indexed by combinatorial data we call smoothing diagrams, and amenable to algorithmic classification. Applying the theory to four-dimensional projective space, we obtain a total of 40 irreducible components of the moduli space, most of which are new. Our main technique is a detailed analysis of the relevant deformation complex (the Poisson cohomology) as an object of the constructible derived category.
For a Lagrangian torus A in a simply-connected projective symplectic manifold M, we prove that M has a hypersurface disjoint from a deformation of A. This implies that a Lagrangian torus in a compact hyperkahler manifold is a fiber of an almost holom
A mapping class group of an oriented manifold is a quotient of its diffeomorphism group by the isotopies. In the published version of Mapping class group and a global Torelli theorem for hyperkahler manifolds I made an error based on a wrong quotatio
Given two semistable, non potentially isotrivial elliptic surfaces over a curve $C$ defined over a field of characteristic zero or finitely generated over its prime field, we show that any compatible family of effective isometries of the N{e}ron-Seve
A log symplectic manifold is a complex manifold equipped with a complex symplectic form that has simple poles on a hypersurface. The possible singularities of such a hypersurface are heavily constrained. We introduce the notion of an elliptic point o
Let $text{M}_C( 2, mathcal{O}_C) cong mathbb{P}^3$ denote the coarse moduli space of semistable vector bundles of rank $2$ with trivial determinant over a smooth projective curve $C$ of genus $2$ over $mathbb{C}$. Let $beta_C$ denote the natural Brau