ترغب بنشر مسار تعليمي؟ اضغط هنا

Symplectic resolutions for multiplicative quiver varieties and character varieties for punctured surfaces

180   0   0.0 ( 0 )
 نشر من قبل Travis Schedler
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the algebraic symplectic geometry of multiplicative quiver varieties, which are moduli spaces of representations of certain quiver algebras, introduced by Crawley-Boevey and Shaw, called multiplicative preprojective algebras. They are multiplicative analogues of Nakajima quiver varieties. They include character varieties of (open) Riemann surfaces fixing conjugacy class closures of the monodromies around punctures, when the quiver is crab-shaped. We prove that, under suitable hypotheses on the dimension vector of the representations, or the conjugacy classes of monodromies in the character variety case, the normalisations of such moduli spaces are symplectic singularities and that the existence of a symplectic resolution depends on a combinatorial condition on the quiver and the dimension vector. These results are analogous to those obtained by Bellamy and the first author in the ordinary quiver variety case, and for character varieties of closed Riemann surfaces. At the end of the paper, we outline some conjectural generalisations to moduli spaces of objects in 2-Calabi--Yau categories.



قيم البحث

اقرأ أيضاً

In this article we consider the connected component of the identity of $G$-character varieties of compact Riemann surfaces of genus $g > 0$, for connected complex reductive groups $G$ of type $A$ (e.g., $SL_n$ and $GL_n$). We show that these varietie s are symplectic singularities and classify which admit symplectic resolutions. The classification reduces to the semi-simple case, where we show that a resolution exists if and only if either $g=1$ and $G$ is a product of special linear groups of any rank and copies of the group $PGL_2$, or if $g=2$ and $G = (SL_2)^m$ for some $m$.
193 - Michel Brion , Baohua Fu 2013
We introduce the notion of a conical symplectic variety, and show that any symplectic resolution of such a variety is isomorphic to the Springer resolution of a nilpotent orbit in a semisimple Lie algebra, composed with a linear projection.
In this paper, we construct a lax monoidal Topological Quantum Field Theory that computes virtual classes, in the Grothendieck ring of algebraic varieties, of $G$-representation varieties over manifolds with conic singularities, which we will call no defolds. This construction is valid for any algebraic group $G$, in any dimension and also in the parabolic setting. In particular, this TQFT allow us to compute the virtual classes of representation varieties over complex singular planar curves. In addition, in the case $G = mathrm{SL}_{2}(k)$, the virtual class of the associated character variety over a nodal closed orientable surface is computed both in the non-parabolic and in the parabolic scenarios.
Let G be a complex affine algebraic reductive group, and let K be a maximal compact subgroup of G. Fix elements h_1,...,h_m in K. For n greater than or equal to 0, let X (respectively, Y) be the space of equivalence classes of representations of the free group of m+n generators in G (respectively, K) such that for each i between 1 and m, the image of the i-th free generator is conjugate to h_i. These spaces are parabolic analogues of character varieties of free groups. We prove that Y is a strong deformation retraction of X. In particular, X and Y are homotopy equivalent. We also describe explicit examples relating X to relative character varieties.
152 - Wei Gu , Elana Kalashnikov 2020
The rim-hook rule for quantum cohomology of the Grassmannian allows one to reduce quantum calculations to classical calculations in the cohomology of the Grassmannian. We use the Abelian/non-Abelian correspondence for cohomology to prove a rim-hook r emoval rule for the cohomology of quiver flag varieties. Quiver flag varieties are generalisations of type A flag varieties; this result is new even in the flag case. This gives an effective way of computing products in their cohomology, reducing computations to that in the cohomology ring of the Grassmannian. We then prove a quantum rim-hook rule for Fano quiver flag varieties (including type A flag varieties). As a corollary, we see that the Gu--Sharpe mirror to a Fano quiver flag variety computes its quantum cohomology.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا