ترغب بنشر مسار تعليمي؟ اضغط هنا

The finite satisfiability problem of monadic second order logic is decidable only on classes of structures of bounded tree-width by the classic result of Seese (1991). We prove the following problem is decidable: Input: (i) A monadic second order l ogic sentence $alpha$, and (ii) a sentence $beta$ in the two-variable fragment of first order logic extended with counting quantifiers. The vocabularies of $alpha$ and $beta$ may intersect. Output: Is there a finite structure which satisfies $alphalandbeta$ such that the restriction of the structure to the vocabulary of $alpha$ has bounded tree-width? (The tree-width of the desired structure is not bounded.) As a consequence, we prove the decidability of the satisfiability problem by a finite structure of bounded tree-width of a logic extending monadic second order logic with linear cardinality constraints of the form $|X_{1}|+cdots+|X_{r}|<|Y_{1}|+cdots+|Y_{s}|$, where the $X_{i}$ and $Y_{j}$ are monadic second order variables. We prove the decidability of a similar extension of WS1S.
Graph polynomials which are definable in Monadic Second Order Logic (MSOL) on the vocabulary of graphs are Fixed-Parameter Tractable (FPT) with respect to clique-width. In contrast, graph polynomials which are definable in MSOL on the vocabulary of h ypergraphs are fixed-parameter tractable with respect to tree-width, but not necessarily with respect to clique width. No algorithmic meta-theorem is known for the computation of graph polynomials definable in MSOL on the vocabulary of hypergraphs with respect to clique-width. We define an infinite class of such graph polynomials extending the class of graph polynomials definable in MSOL on the vocabulary of graphs and prove that they are Fixed-Parameter Polynomial Time (FPPT) computable, i.e. that they can be computed in time $O(n^{f(k)})$, where $n$ is the number of vertices and $k$ is the clique-width.
We introduce a description logic ALCQIO_{b,Re} which adds reachability assertions to ALCQIO, a sub-logic of the two-variable fragment of first order logic with counting quantifiers. ALCQIO_{b,Re} is well-suited for applications in software verificati on and shape analysis. Shape analysis requires expressive logics which can express reachability and have good computational properties. We show that ALCQIO_{b,Re} can describe complex data structures with a high degree of sharing and allows compositions such as list of trees. We show that the finite satisfiability and implication problems of ALCQIO_{b,Re}-formulae are polynomial-time reducible to finite satisfiability of ALCQIO-formulae. As a consequence, we get that finite satisfiability and finite implication in ALCQIO_{b,Re} are NEXPTIME-complete. Description logics with transitive closure constructors have been studied before, but ALCQIO_{b,Re} is the first description logic that remains decidable on finite structures while allowing at the same time nominals, inverse roles, counting quantifiers and reachability assertions,
The verification community has studied dynamic data structures primarily in a bottom-up way by analyzing pointers and the shapes induced by them. Recent work in fields such as separation logic has made significant progress in extracting shapes from p rogram source code. Many real world programs however manipulate complex data whose structure and content is most naturally described by formalisms from object oriented programming and databases. In this paper, we look at the verification of programs with dynamic data structures from the perspective of content representation. Our approach is based on description logic, a widely used knowledge representation paradigm which gives a logical underpinning for diverse modeling frameworks such as UML and ER. Technically, we assume that we have separation logic shape invariants obtained from a shape analysis tool, and requirements on the program data in terms of description logic. We show that the two-variable fragment of first order logic with counting and trees %(whose decidability was proved at LICS 2013) can be used as a joint framework to embed suitable fragments of description logic and separation logic.
We show that any graph polynomial from a wide class of graph polynomials yields a recurrence relation on an infinite class of families of graphs. The recurrence relations we obtain have coefficients which themselves satisfy linear recurrence relation s. We give explicit applications to the Tutte polynomial and the independence polynomial. Furthermore, we get that for any sequence $a_{n}$ satisfying a linear recurrence with constant coefficients, the sub-sequence corresponding to square indices $a_{n^{2}}$ and related sub-sequences satisfy recurrences with recurrent coefficients.
In this paper we extend and prove in detail the Finite Rank Theorem for connection matrices of graph parameters definable in Monadic Second Order Logic with counting (CMSOL) from B. Godlin, T. Kotek and J.A. Makowsky (2008) and J.A. Makowsky (2009). We demonstrate its vast applicability in simplifying known and new non-definability results of graph properties and finding new non-definability results for graph parameters. We also prove a Feferman-Vaught Theorem for the logic CFOL, First Order Logic with the modular counting quantifiers.
The domination polynomials of binary graph operations, aside from union, join and corona, have not been widely studied. We compute and prove recurrence formulae and properties of the domination polynomials of families of graphs obtained by various pr oducts, ranging from explicit formulae and recurrences for specific families to more general results. As an application, we show the domination polynomial is computationally hard to evaluate.
The domination polynomial D(G,x) is the ordinary generating function for the dominating sets of an undirected graph G=(V,E) with respect to their cardinality. We consider in this paper representations of D(G,x) as a sum over subsets of the edge and v ertex set of G. One of our main results is a representation of D(G,x) as a sum ranging over spanning bipartite subgraphs of G. We call a graph G conformal if all of its components are of even order. We show that the number of dominating sets of G equals a sum ranging over vertex-induced conformal subgraphs of G.
The domination polynomial D(G,x) of a graph G is the generating function of its dominating sets. We prove that D(G,x) satisfies a wide range of reduction formulas. We show linear recurrence relations for D(G,x) for arbitrary graphs and for various sp ecial cases. We give splitting formulas for D(G,x) based on articulation vertices, and more generally, on splitting sets of vertices.
138 - Tomer Kotek 2011
This paper deals with the partition function of the Ising model from statistical mechanics, which is used to study phase transitions in physical systems. A special case of interest is that of the Ising model with constant energies and external field. One may consider such an Ising system as a simple graph together with vertex and edge weights. When these weights are considered indeterminates, the partition function for the constant case is a trivariate polynomial Z(G;x,y,z). This polynomial was studied with respect to its approximability by L. A. Goldberg, M. Jerrum and M. Paterson in 2003. Z(G;x,y,z) generalizes a bivariate polynomial Z(G;t,y), which was studied by D. Andr{e}n and K. Markstr{o}m in 2009. We consider the complexity of Z(G;t,y) and Z(G;x,y,z) in comparison to that of the Tutte polynomial, which is well-known to be closely related to the Potts model in the absence of an external field. We show that Z(G;x,y,z) is #P-hard to evaluate at all points in $mathbb{Q}^3$, except those in an exception set of low dimension, even when restricted to simple graphs which are bipartite and planar. A counting version of the Exponential Time Hypothesis, #ETH, was introduced by H. Dell, T. Husfeldt and M. Wahl{e}n in 2010 in order to study the complexity of the Tutte polynomial. In analogy to their results, we give a dichotomy theorem stating that evaluations of Z(G;t,y) either take exponential time in the number of vertices of $G$ to compute, or can be done in polynomial time. Finally, we give an algorithm for computing Z(G;x,y,z) in polynomial time on graphs of bounded clique-width, which is not known in the case of the Tutte polynomial.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا