ﻻ يوجد ملخص باللغة العربية
We introduce a description logic ALCQIO_{b,Re} which adds reachability assertions to ALCQIO, a sub-logic of the two-variable fragment of first order logic with counting quantifiers. ALCQIO_{b,Re} is well-suited for applications in software verification and shape analysis. Shape analysis requires expressive logics which can express reachability and have good computational properties. We show that ALCQIO_{b,Re} can describe complex data structures with a high degree of sharing and allows compositions such as list of trees. We show that the finite satisfiability and implication problems of ALCQIO_{b,Re}-formulae are polynomial-time reducible to finite satisfiability of ALCQIO-formulae. As a consequence, we get that finite satisfiability and finite implication in ALCQIO_{b,Re} are NEXPTIME-complete. Description logics with transitive closure constructors have been studied before, but ALCQIO_{b,Re} is the first description logic that remains decidable on finite structures while allowing at the same time nominals, inverse roles, counting quantifiers and reachability assertions,
Iterative imperative programs can be considered as infinite-state systems computing over possibly unbounded domains. Studying reachability in these systems is challenging as it requires to deal with an infinite number of states with standard backward
IC3 has been a leap forward in symbolic model checking. This paper proposes PrIC3 (pronounced pricy-three), a conservative extension of IC3 to symbolic model checking of MDPs. Our main focus is to develop the theory underlying PrIC3. Alongside, we pr
This paper is about reachability analysis in a restricted subclass of multi-pushdown automata. We assume that the control states of an automaton are partially ordered, and all transitions of an automaton go downwards with respect to the order. We pro
Parametric Interval Markov Chains (pIMCs) are a specification formalism that extend Markov Chains (MCs) and Interval Markov Chains (IMCs) by taking into account imprecision in the transition probability values: transitions in pIMCs are labeled with p
This article presents the complexity of reachability decision problems for parametric Markov decision processes (pMDPs), an extension to Markov decision processes (MDPs) where transitions probabilities are described by polynomials over a finite set o