ﻻ يوجد ملخص باللغة العربية
The domination polynomials of binary graph operations, aside from union, join and corona, have not been widely studied. We compute and prove recurrence formulae and properties of the domination polynomials of families of graphs obtained by various products, ranging from explicit formulae and recurrences for specific families to more general results. As an application, we show the domination polynomial is computationally hard to evaluate.
The domination polynomial D(G,x) is the ordinary generating function for the dominating sets of an undirected graph G=(V,E) with respect to their cardinality. We consider in this paper representations of D(G,x) as a sum over subsets of the edge and v
For a graph $G,$ we consider $D subset V(G)$ to be a porous exponential dominating set if $1le sum_{d in D}$ $left( frac{1}{2} right)^{text{dist}(d,v) -1}$ for every $v in V(G),$ where dist$(d,v)$ denotes the length of the smallest $dv$ path. Similar
In 2009, Brown gave a set of conditions which when satisfied imply that a Feynman integral evaluates to a multiple zeta value. One of these conditions is called reducibility, which loosely says there is an order of integration for the Feynman integra
We define the type of graph products, which enable us to treat many graph products in a unified manner. These unified graph products are shown to be compatible with Godsil--McKay switching. Furthermore, by this compatibility, we show that the Doob gr
A k-valuation is a special type of edge k-colouring of a medial graph. Various graph polynomials, such as the Tutte, Penrose, Bollobas-Riordan, and transition polynomials, admit combinatorial interpretations and evaluations as weighted counts of k-va