ﻻ يوجد ملخص باللغة العربية
The domination polynomial D(G,x) is the ordinary generating function for the dominating sets of an undirected graph G=(V,E) with respect to their cardinality. We consider in this paper representations of D(G,x) as a sum over subsets of the edge and vertex set of G. One of our main results is a representation of D(G,x) as a sum ranging over spanning bipartite subgraphs of G. We call a graph G conformal if all of its components are of even order. We show that the number of dominating sets of G equals a sum ranging over vertex-induced conformal subgraphs of G.
The domination polynomials of binary graph operations, aside from union, join and corona, have not been widely studied. We compute and prove recurrence formulae and properties of the domination polynomials of families of graphs obtained by various pr
In 1990, Alon and Kleitman proposed an argument for the sum-free subset problem: every set of n nonzero elements of a finite Abelian group contains a sum-free subset A of size |A|>frac{2}{7}n. In this note, we show that the argument confused two diff
Let $G$ be an additive abelian group and $Ssubset G$ a subset. Let $Sigma(S)$ denote the set of group elements which can be expressed as a sum of a nonempty subset of $S$. We say $S$ is zero-sum free if $0 otin Sigma(S)$. It was conjectured by R.B.~
The well-known notion of domination in a graph abstracts the idea of protecting locations with guards. This paper introduces a new graph invariant, the autonomous domination number, which abstracts the idea of defending a collection of locations with
We show that Nederlofs algorithm [Information Processing Letters, 118 (2017), 15-16] for constructing a proof that the number of subsets summing to a particular integer equals a claimed quantity is flawed because: 1) its consistence is not kept; 2) the proposed recurrence formula is incorrect.