ترغب بنشر مسار تعليمي؟ اضغط هنا

148 - Jithin Ravi , Tobias Koch 2020
This paper considers a Gaussian multiple-access channel with random user activity where the total number of users $ell_n$ and the average number of active users $k_n$ may grow with the blocklength $n$. For this channel, it studies the maximum number of bits that can be transmitted reliably per unit-energy as a function of $ell_n$ and $k_n$. When all users are active with probability one, i.e., $ell_n = k_n$, it is demonstrated that if $k_n$ is of an order strictly below $n/log n$, then each user can achieve the single-user capacity per unit-energy $(log e)/N_0$ (where $N_0/ 2$ is the noise power) by using an orthogonal-access scheme. In contrast, if $k_n$ is of an order strictly above $n/log n$, then the capacity per unit-energy is zero. Consequently, there is a sharp transition between orders of growth where interference-free communication is feasible and orders of growth where reliable communication at a positive rate per unit-energy is infeasible. It is further demonstrated that orthogonal-access schemes in combination with orthogonal codebooks, which achieve the capacity per unit-energy when the number of users is bounded, can be strictly suboptimal. When the user activity is random, i.e., when $ell_n$ and $k_n$ are different, it is demonstrated that if $k_nlog ell_n$ is sublinear in $n$, then each user can achieve the single-user capacity per unit-energy $(log e)/N_0$. Conversely, if $k_nlog ell_n$ is superlinear in $n$, then the capacity per unit-energy is zero. Consequently, there is again a sharp transition between orders of growth where interference-free communication is feasible and orders of growth where reliable communication at a positive rate is infeasible that depends on the asymptotic behaviours of both $ell_n$ and $k_n$. It is further demonstrated that orthogonal-access schemes, which are optimal when $ell_n = k_n$, can be strictly suboptimal.
140 - Jithin Ravi , Tobias Koch 2020
We consider a Gaussian multiple-access channel with random user activity where the total number of users $ell_n$ and the average number of active users $k_n$ may be unbounded. For this channel, we characterize the maximum number of bits that can be t ransmitted reliably per unit-energy in terms of $ell_n$ and $k_n$. We show that if $k_nlog ell_n$ is sublinear in $n$, then each user can achieve the single-user capacity per unit-energy. Conversely, if $k_nlog ell_n$ is superlinear in $n$, then the capacity per unit-energy is zero. We further demonstrate that orthogonal-access schemes, which are optimal when all users are active with probability one, can be strictly suboptimal.
209 - Jithin Ravi , Tobias Koch 2019
We consider a Gaussian multiple-access channel where the number of transmitters grows with the blocklength $n$. For this setup, the maximum number of bits that can be transmitted reliably per unit-energy is analyzed. We show that if the number of use rs is of an order strictly above $n/log n$, then the users cannot achieve any positive rate per unit-energy. In contrast, if the number of users is of order strictly below $n/log n$, then each user can achieve the single-user capacity per unit-energy $(log e)/N_0$ (where $N_0/ 2$ is the noise power) by using an orthogonal access scheme such as time division multiple access. We further demonstrate that orthogonal codebooks, which achieve the capacity per unit-energy when the number of users is bounded, can be strictly suboptimal.
This paper studies a bursty interference channel, where the presence/absence of interference is modeled by a block-i.i.d. Bernoulli process that stays constant for a duration of $T$ symbols (referred to as coherence block) and then changes independen tly to a new state. We consider both a quasi-static setup, where the interference state remains constant during the whole transmission of the codeword, and an ergodic setup, where a codeword spans several coherence blocks. For the quasi-static setup, we study the largest rate of a coding strategy that provides reliable communication at a basic rate and allows an increased (opportunistic) rate when there is no interference. For the ergodic setup, we study the largest achievable rate. We study how non-causal knowledge of the interference state, referred to as channel-state information (CSI), affects the achievable rates. We derive converse and achievability bounds for (i) local CSI at the receiver-side only; (ii) local CSI at the transmitter- and receiver-side, and (iii) global CSI at all nodes. Our bounds allow us to identify when interference burstiness is beneficial and in which scenarios global CSI outperforms local CSI. The joint treatment of the quasi-static and ergodic setup further allows for a thorough comparison of these two setups.
While an increasing interest in deep models for single-image depth estimation methods can be observed, established schemes for their evaluation are still limited. We propose a set of novel quality criteria, allowing for a more detailed analysis by fo cusing on specific characteristics of depth maps. In particular, we address the preservation of edges and planar regions, depth consistency, and absolute distance accuracy. In order to employ these metrics to evaluate and compare state-of-the-art single-image depth estimation approaches, we provide a new high-quality RGB-D dataset. We used a DSLR camera together with a laser scanner to acquire high-resolution images and highly accurate depth maps. Experimental results show the validity of our proposed evaluation protocol.
The authors have recently defined the Renyi information dimension rate $d({X_t})$ of a stationary stochastic process ${X_t,,tinmathbb{Z}}$ as the entropy rate of the uniformly-quantized process divided by minus the logarithm of the quantizer step siz e $1/m$ in the limit as $mtoinfty$ (B. Geiger and T. Koch, On the information dimension rate of stochastic processes, in Proc. IEEE Int. Symp. Inf. Theory (ISIT), Aachen, Germany, June 2017). For Gaussian processes with a given spectral distribution function $F_X$, they showed that the information dimension rate equals the Lebesgue measure of the set of harmonics where the derivative of $F_X$ is positive. This paper extends this result to multivariate Gaussian processes with a given matrix-valued spectral distribution function $F_{mathbf{X}}$. It is demonstrated that the information dimension rate equals the average rank of the derivative of $F_{mathbf{X}}$. As a side result, it is shown that the scale and translation invariance of information dimension carries over from random variables to stochastic processes.
In this paper, we analyze the tradeoff between coding rate and asymptotic performance of a class of generalized low-density parity-check (GLDPC) codes constructed by including a certain fraction of generalized constraint (GC) nodes in the graph. The rate of the GLDPC ensemble is bounded using classical results on linear block codes, namely Hamming bound and Varshamov bound. We also study the impact of the decoding method used at GC nodes. To incorporate both bounded-distance (BD) and Maximum Likelihood (ML) decoding at GC nodes into our analysis without resorting on multi-edge type of degree distributions (DDs), we propose the probabilistic peeling decoding (P-PD) algorithm, which models the decoding step at every GC node as an instance of a Bernoulli random variable with a successful decoding probability that depends on both the GC block code as well as its decoding algorithm. The P-PD asymptotic performance over the BEC can be efficiently predicted using standard techniques for LDPC codes such as density evolution (DE) or the differential equation method. Furthermore, for a class of GLDPC ensembles, we demonstrate that the simulated P-PD performance accurately predicts the actual performance of the GLPDC code under ML decoding at GC nodes. We illustrate our analysis for GLDPC code ensembles with regular and irregular DDs. In all cases, we show that a large fraction of GC nodes is required to reduce the original gap to capacity, but the optimal fraction is strictly smaller than one. We then consider techniques to further reduce the gap to capacity by means of random puncturing, and the inclusion of a certain fraction of generalized variable nodes in the graph.
This paper concerns the maximum coding rate at which data can be transmitted over a noncoherent, single-antenna, Rayleigh block-fading channel using an error-correcting code of a given blocklength with a block-error probability not exceeding a given value. A high-SNR normal approximation of the maximum coding rate is presented that becomes accurate as the signal-to-noise ratio (SNR) and the number of coherence intervals $L$ over which we code tend to infinity. Numerical analyses suggest that the approximation is accurate at SNR values above 15dB and when the number of coherence intervals is 10 or more.
In 1959, Renyi proposed the information dimension and the $d$-dimensional entropy to measure the information content of general random variables. This paper proposes a generalization of information dimension to stochastic processes by defining the in formation dimension rate as the entropy rate of the uniformly-quantized stochastic process divided by minus the logarithm of the quantizer step size $1/m$ in the limit as $mtoinfty$. It is demonstrated that the information dimension rate coincides with the rate-distortion dimension, defined as twice the rate-distortion function $R(D)$ of the stochastic process divided by $-log(D)$ in the limit as $Ddownarrow 0$. It is further shown that, among all multivariate stationary processes with a given (matrix-valued) spectral distribution function (SDF), the Gaussian process has the largest information dimension rate, and that the information dimension rate of multivariate stationary Gaussian processes is given by the average rank of the derivative of the SDF. The presented results reveal that the fundamental limits of almost zero-distortion recovery via compressible signal pursuit and almost lossless analog compression are different in general.
We derive a lower bound on the smallest output entropy that can be achieved via vector quantization of a $d$-dimensional source with given expected $r$th-power distortion. Specialized to the one-dimensional case, and in the limit of vanishing distort ion, this lower bound converges to the output entropy achieved by a uniform quantizer, thereby recovering the result by Gish and Pierce that uniform quantizers are asymptotically optimal as the allowed distortion tends to zero. Our lower bound holds for all $d$-dimensional memoryless sources having finite differential entropy and whose integer part has finite entropy. In contrast to Gish and Pierce, we do not require any additional constraints on the continuity or decay of the source probability density function. For one-dimensional sources, the derivation of the lower bound reveals a necessary condition for a sequence of quantizers to be asymptotically optimal as the allowed distortion tends to zero. This condition implies that any sequence of asymptotically-optimal almost-regular quantizers must converge to a uniform quantizer as the allowed distortion tends to zero.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا