ترغب بنشر مسار تعليمي؟ اضغط هنا

On the Information Dimension of Multivariate Gaussian Processes

164   0   0.0 ( 0 )
 نشر من قبل Bernhard C. Geiger
 تاريخ النشر 2017
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

The authors have recently defined the Renyi information dimension rate $d({X_t})$ of a stationary stochastic process ${X_t,,tinmathbb{Z}}$ as the entropy rate of the uniformly-quantized process divided by minus the logarithm of the quantizer step size $1/m$ in the limit as $mtoinfty$ (B. Geiger and T. Koch, On the information dimension rate of stochastic processes, in Proc. IEEE Int. Symp. Inf. Theory (ISIT), Aachen, Germany, June 2017). For Gaussian processes with a given spectral distribution function $F_X$, they showed that the information dimension rate equals the Lebesgue measure of the set of harmonics where the derivative of $F_X$ is positive. This paper extends this result to multivariate Gaussian processes with a given matrix-valued spectral distribution function $F_{mathbf{X}}$. It is demonstrated that the information dimension rate equals the average rank of the derivative of $F_{mathbf{X}}$. As a side result, it is shown that the scale and translation invariance of information dimension carries over from random variables to stochastic processes.



قيم البحث

اقرأ أيضاً

In 1959, Renyi proposed the information dimension and the $d$-dimensional entropy to measure the information content of general random variables. This paper proposes a generalization of information dimension to stochastic processes by defining the in formation dimension rate as the entropy rate of the uniformly-quantized stochastic process divided by minus the logarithm of the quantizer step size $1/m$ in the limit as $mtoinfty$. It is demonstrated that the information dimension rate coincides with the rate-distortion dimension, defined as twice the rate-distortion function $R(D)$ of the stochastic process divided by $-log(D)$ in the limit as $Ddownarrow 0$. It is further shown that, among all multivariate stationary processes with a given (matrix-valued) spectral distribution function (SDF), the Gaussian process has the largest information dimension rate, and that the information dimension rate of multivariate stationary Gaussian processes is given by the average rank of the derivative of the SDF. The presented results reveal that the fundamental limits of almost zero-distortion recovery via compressible signal pursuit and almost lossless analog compression are different in general.
The entropy of a pair of random variables is commonly depicted using a Venn diagram. This representation is potentially misleading, however, since the multivariate mutual information can be negative. This paper presents new measures of multivariate i nformation content that can be accurately depicted using Venn diagrams for any number of random variables. These measures complement the existing measures of multivariate mutual information and are constructed by considering the algebraic structure of information sharing. It is shown that the distinct ways in which a set of marginal observers can share their information with a non-observing third party corresponds to the elements of a free distributive lattice. The redundancy lattice from partial information decomposition is then subsequently and independently derived by combining the algebraic structures of joint and shared information content.
The information that two random variables $Y$, $Z$ contain about a third random variable $X$ can have aspects of shared information (contained in both $Y$ and $Z$), of complementary information (only available from $(Y,Z)$ together) and of unique inf ormation (contained exclusively in either $Y$ or $Z$). Here, we study measures $widetilde{SI}$ of shared, $widetilde{UI}$ unique and $widetilde{CI}$ complementary information introduced by Bertschinger et al., which are motivated from a decision theoretic perspective. We find that in most cases the intuitive rule that more variables contain more information applies, with the exception that $widetilde{SI}$ and $widetilde{CI}$ information are not monotone in the target variable $X$. Additionally, we show that it is not possible to extend the bivariate information decomposition into $widetilde{SI}$, $widetilde{UI}$ and $widetilde{CI}$ to a non-negative decomposition on the partial information lattice of Williams and Beer. Nevertheless, the quantities $widetilde{UI}$, $widetilde{SI}$ and $widetilde{CI}$ have a well-defined interpretation, even in the multivariate setting.
The rate-distortion dimension (RDD) of an analog stationary process is studied as a measure of complexity that captures the amount of information contained in the process. It is shown that the RDD of a process, defined as two times the asymptotic rat io of its rate-distortion function $R(D)$ to $log {1over D}$ as the distortion $D$ approaches zero, is equal to its information dimension (ID). This generalizes an earlier result by Kawabata and Dembo and provides an operational approach to evaluate the ID of a process, which previously was shown to be closely related to the effective dimension of the underlying process and also to the fundamental limits of compressed sensing. The relation between RDD and ID is illustrated for a piecewise constant process.
Exploiting the theory of state space models, we derive the exact expressions of the information transfer, as well as redundant and synergistic transfer, for coupled Gaussian processes observed at multiple temporal scales. All of the terms, constituti ng the frameworks known as interaction information decomposition and partial information decomposition, can thus be analytically obtained for different time scales from the parameters of the VAR model that fits the processes. We report the application of the proposed methodology firstly to benchmark Gaussian systems, showing that this class of systems may generate patterns of information decomposition characterized by mainly redundant or synergistic information transfer persisting across multiple time scales or even by the alternating prevalence of redundant and synergistic source interaction depending on the time scale. Then, we apply our method to an important topic in neuroscience, i.e., the detection of causal interactions in human epilepsy networks, for which we show the relevance of partial information decomposition to the detection of multiscale information transfer spreading from the seizure onset zone.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا