ترغب بنشر مسار تعليمي؟ اضغط هنا

Scaling Laws for Gaussian Random Many-Access Channels

149   0   0.0 ( 0 )
 نشر من قبل Jithin Ravi
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper considers a Gaussian multiple-access channel with random user activity where the total number of users $ell_n$ and the average number of active users $k_n$ may grow with the blocklength $n$. For this channel, it studies the maximum number of bits that can be transmitted reliably per unit-energy as a function of $ell_n$ and $k_n$. When all users are active with probability one, i.e., $ell_n = k_n$, it is demonstrated that if $k_n$ is of an order strictly below $n/log n$, then each user can achieve the single-user capacity per unit-energy $(log e)/N_0$ (where $N_0/ 2$ is the noise power) by using an orthogonal-access scheme. In contrast, if $k_n$ is of an order strictly above $n/log n$, then the capacity per unit-energy is zero. Consequently, there is a sharp transition between orders of growth where interference-free communication is feasible and orders of growth where reliable communication at a positive rate per unit-energy is infeasible. It is further demonstrated that orthogonal-access schemes in combination with orthogonal codebooks, which achieve the capacity per unit-energy when the number of users is bounded, can be strictly suboptimal. When the user activity is random, i.e., when $ell_n$ and $k_n$ are different, it is demonstrated that if $k_nlog ell_n$ is sublinear in $n$, then each user can achieve the single-user capacity per unit-energy $(log e)/N_0$. Conversely, if $k_nlog ell_n$ is superlinear in $n$, then the capacity per unit-energy is zero. Consequently, there is again a sharp transition between orders of growth where interference-free communication is feasible and orders of growth where reliable communication at a positive rate is infeasible that depends on the asymptotic behaviours of both $ell_n$ and $k_n$. It is further demonstrated that orthogonal-access schemes, which are optimal when $ell_n = k_n$, can be strictly suboptimal.

قيم البحث

اقرأ أيضاً

140 - Jithin Ravi , Tobias Koch 2020
We consider a Gaussian multiple-access channel with random user activity where the total number of users $ell_n$ and the average number of active users $k_n$ may be unbounded. For this channel, we characterize the maximum number of bits that can be t ransmitted reliably per unit-energy in terms of $ell_n$ and $k_n$. We show that if $k_nlog ell_n$ is sublinear in $n$, then each user can achieve the single-user capacity per unit-energy. Conversely, if $k_nlog ell_n$ is superlinear in $n$, then the capacity per unit-energy is zero. We further demonstrate that orthogonal-access schemes, which are optimal when all users are active with probability one, can be strictly suboptimal.
209 - Jithin Ravi , Tobias Koch 2019
We consider a Gaussian multiple-access channel where the number of transmitters grows with the blocklength $n$. For this setup, the maximum number of bits that can be transmitted reliably per unit-energy is analyzed. We show that if the number of use rs is of an order strictly above $n/log n$, then the users cannot achieve any positive rate per unit-energy. In contrast, if the number of users is of order strictly below $n/log n$, then each user can achieve the single-user capacity per unit-energy $(log e)/N_0$ (where $N_0/ 2$ is the noise power) by using an orthogonal access scheme such as time division multiple access. We further demonstrate that orthogonal codebooks, which achieve the capacity per unit-energy when the number of users is bounded, can be strictly suboptimal.
The scaling laws of the achievable communication rates and the corresponding upper bounds of distributed reception in the presence of an interfering signal are investigated. The scheme includes one transmitter communicating to a remote destination vi a two relays, which forward messages to the remote destination through reliable links with finite capacities. The relays receive the transmission along with some unknown interference. We focus on three common settings for distributed reception, wherein the scaling laws of the capacity (the pre-log as the power of the transmitter and the interference are taken to infinity) are completely characterized. It is shown in most cases that in order to overcome the interference, a definite amount of information about the interference needs to be forwarded along with the desired message, to the destination. It is exemplified in one scenario that the cut-set upper bound is strictly loose. The results are derived using the cut-set along with a new bounding technique, which relies on multi letter expressions. Furthermore, lattices are found to be a useful communication technique in this setting, and are used to characterize the scaling laws of achievable rates.
OR multi-access channel is a simple model where the channel output is the Boolean OR among the Boolean channel inputs. We revisit this model, showing that employing Bloom filter, a randomized data structure, as channel inputs achieves its capacity re gion with joint decoding and the symmetric sum rate of $ln 2$ bits per channel use without joint decoding. We then proceed to the many-access regime where the number of potential users grows without bound, treating both activity recognition and message transmission problems, establishing scaling laws which are optimal within a constant factor, based on Bloom filter channel inputs.
The feedback sum-rate capacity is established for the symmetric $J$-user Gaussian multiple-access channel (GMAC). The main contribution is a converse bound that combines the dependence-balance argument of Hekstra and Willems (1989) with a variant of the factorization of a convex envelope of Geng and Nair (2014). The converse bound matches the achievable sum-rate of the Fourier-Modulated Estimate Correction strategy of Kramer (2002).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا