ﻻ يوجد ملخص باللغة العربية
In this paper, we analyze the tradeoff between coding rate and asymptotic performance of a class of generalized low-density parity-check (GLDPC) codes constructed by including a certain fraction of generalized constraint (GC) nodes in the graph. The rate of the GLDPC ensemble is bounded using classical results on linear block codes, namely Hamming bound and Varshamov bound. We also study the impact of the decoding method used at GC nodes. To incorporate both bounded-distance (BD) and Maximum Likelihood (ML) decoding at GC nodes into our analysis without resorting on multi-edge type of degree distributions (DDs), we propose the probabilistic peeling decoding (P-PD) algorithm, which models the decoding step at every GC node as an instance of a Bernoulli random variable with a successful decoding probability that depends on both the GC block code as well as its decoding algorithm. The P-PD asymptotic performance over the BEC can be efficiently predicted using standard techniques for LDPC codes such as density evolution (DE) or the differential equation method. Furthermore, for a class of GLDPC ensembles, we demonstrate that the simulated P-PD performance accurately predicts the actual performance of the GLPDC code under ML decoding at GC nodes. We illustrate our analysis for GLDPC code ensembles with regular and irregular DDs. In all cases, we show that a large fraction of GC nodes is required to reduce the original gap to capacity, but the optimal fraction is strictly smaller than one. We then consider techniques to further reduce the gap to capacity by means of random puncturing, and the inclusion of a certain fraction of generalized variable nodes in the graph.
In this paper, we propose a novel low complexity scaling strategy of min-sum decoding algorithm for irregular LDPC codes. In the proposed method, we generalize our previously proposed simplified Variable Scaled Min-Sum (SVS-min-sum) by replacing the
Min-Sum decoding is widely used for decoding LDPC codes in many modern digital video broadcasting decoding due to its relative low complexity and robustness against quantization error. However, the suboptimal performance of the Min-Sum affects the in
Braided convolutional codes (BCCs) are a class of spatially coupled turbo-like codes that can be described by a $(2,3)$-regular compact graph. In this paper, we introduce a family of $(d_v,d_c)$-regular GLDPC codes with convolutional code constraints
The recent development of deep learning methods provides a new approach to optimize the belief propagation (BP) decoding of linear codes. However, the limitation of existing works is that the scale of neural networks increases rapidly with the codele
Generalized low-density parity-check (GLDPC) codes are a class of LDPC codes in which the standard single parity check (SPC) constraints are replaced by constraints defined by a linear block code. These stronger constraints typically result in improv