ترغب بنشر مسار تعليمي؟ اضغط هنا

We develop the foundations of a geometric theory of countably-infinite approximate groups, extending work of Bjorklund and the second-named author. Our theory is based on the notion of a quasi-isometric quasi-action (qiqac) of an approximate group on a metric space. More specifically, we introduce a geometric notion of finite generation for approximate group and prove that every geometrically finitely-generated approximate group admits a geometric qiqac on a proper geodesic metric space. We then show that all such spaces are quasi-isometric, hence can be used to associate a canonical QI type with every geometrically finitely-generated approximate group. This in turn allows us to define geometric invariants of approximate groups using QI invariants of metric spaces. Among the invariants we consider are asymptotic dimension, finiteness properties, numbers of ends and growth type. A particular focus is on qiqacs on hyperbolic spaces. Our strongest results are obtained for approximate groups which admit a geometric qiqac on a proper geodesic hyperbolic space. For such ``hyperbolic approximate groups we establish a number of fundamental properties in analogy with the case of hyperbolic groups. For example, we show that their asymptotic dimension is one larger than the topological dimension of their Gromov boundary and that - under some mild assumption of being ``non-elementary - they have exponential growth and act minimally on their Gromov boundary. We also study convex cocompact qiqacs on hyperbolic spaces. Using the theory of Morse boundaries, we extend some of our results concerning qiqacs on hyperbolic spaces to qiqacs on proper geodesic metric spaces with non-trivial Morse boundary.
We define spherical diffraction measures for a wide class of weighted point sets in commutative spaces, i.e. proper homogeneous spaces associated with Gelfand pairs. In the case of the hyperbolic plane we can interpret the spherical diffraction measu re as the Mellin transform of the auto-correlation distribution. We show that uniform regular model sets in commutative spaces have a pure point spherical diffraction measure. The atoms of this measure are located at the spherical automorphic spectrum of the underlying lattice, and the diffraction coefficients can be characterized abstractly in terms of the so-called shadow transform of the characteristic functions of the window. In the case of the Heisenberg group we can give explicit formulas for these diffraction coefficients in terms of Bessel and Laguerre functions.
We show that an approximate lattice in a nilpotent Lie group admits a relatively dense subset of central $(1-epsilon)$-Bragg peaks for every $epsilon > 0$. For the Heisenberg group we deduce that the union of horizontal and vertical $(1-epsilon)$-Bra gg peaks is relatively dense in the unitary dual. More generally we study uniform approximate lattices in extensions of lcsc groups. We obtain necesary and sufficient conditions for the existence of a continuous horizontal factor of the associated hull-dynamical system, and study the spectral theory of the hull-dynamical system relative to this horizontal factor.
We introduce a notion of cocycle-induction for strong uniform approximate lattices in locally compact second countable groups and use it to relate (relative) Kazhdan- and Haagerup-type of approximate lattices to the corresponding properties of the am bient locally compact groups. Our approach applies to large classes of uniform approximate lattices (though not all of them) and is flexible enough to cover the $L^
We study the auto-correlation measures of invariant random point processes in the hyperbolic plane which arise from various classes of aperiodic Delone sets. More generally, we study auto-correlation measures for large classes of Delone sets in (and even translation bounded measures on) arbitrary locally compact homogeneous metric spaces. We then specialize to the case of weighted model sets, in which we are able to derive more concrete formulas for the auto-correlation. In the case of Riemannian symmetric spaces we also explain how the auto-correlation of a weighted model set in a Riemannian symmetric space can be identified with a (typically non-tempered) positive-definite distribution on $mathbb R^n$. This paves the way for a diffraction theory for such model sets, which will be discussed in the sequel to the present article.
Using a probabilistic argument we show that the second bounded cohomology of an acylindrically hyperbolic group $G$ (e.g., a non-elementary hyperbolic or relatively hyperbolic group, non-exceptional mapping class group, ${rm Out}(F_n)$, dots) embeds via the natural restriction maps into the inverse limit of the second bounded cohomologies of its virtually free subgroups, and in fact even into the inverse limit of the second bounded cohomologies of its hyperbolically embedded virtually free subgroups. This result is new and non-trivial even in the case where $G$ is a (non-free) hyperbolic group. The corresponding statement fails in general for the third bounded cohomology, even for surface groups.
In this article we introduce and study uniform and non-uniform approximate lattices in locally compact second countable (lcsc) groups. These are approximate subgroups (in the sense of Tao) which simultaneously generalize lattices in lcsc group and ma thematical quasi-crystals (a.k.a. Meyer sets) in lcsc abelian groups. We show that envelopes of strong approximate lattices are unimodular, and that approximate lattices in nilpotent groups are uniform. We also establish several results relating properties of approximate lattices and their envelopes. For example, we prove a version of the Milnor-Schwarz lemma for uniform approximate lattices in compactly-generated lcsc groups, which we then use to relate metric amenability of uniform approximate lattices to amenability of the envelope. Finally we extend a theorem of Kleiner and Leeb to show that the isometry groups of higher rank symmetric spaces of non-compact type are QI rigid with respect to finitely-generated approximate groups.
We study uniform and non-uniform model sets in arbitrary locally compact second countable (lcsc) groups, which provide a natural generalization of uniform model sets in locally compact abelian groups as defined by Meyer and used as mathematical model s of quasi-crystals. We then define a notion of auto-correlation for subsets of finite local complexitiy in arbitrary lcsc groups, which generalizes Hofs classical definition beyond the class of amenable groups, and provide a formula for the auto-correlation of a regular model set. Along the way we show that the punctured hull of an arbitrary regular model set admits a unique invariant probability measure, even in the case where the punctured hull is non-compact and the group is non-amenable. In fact this measure is also the unique stationary measure with respect to any admissible probability measure.
We consider finite sums of counting functions on the free group $F_n$ and the free monoid $M_n$ for $n geq 2$. Two such sums are considered equivalent if they differ by a bounded function. We find the complete set of linear relations between equivale nce classes of sums of counting functions and apply this result to construct an explicit basis for the vector space of such equivalence classes. Moreover, we provide a graphical algorithm to determine whether two given sums of counting functions are equivalent. In particular, this yields an algorithm to decide whether two sums of Brooks quasimorphisms on $F_n$ represent the same class in bounded cohomology.
We define a notion of semi-conjugacy between orientation-preserving actions of a group on the circle, which for fixed point free actions coincides with a classical definition of Ghys. We then show that two circle actions are semi-conjugate if and onl y if they have the same bounded Euler class. This settles some existing confusion present in the literature.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا