ترغب بنشر مسار تعليمي؟ اضغط هنا

Relations between counting functions on free groups and free monoids

110   0   0.0 ( 0 )
 نشر من قبل Tobias Hartnick
 تاريخ النشر 2015
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider finite sums of counting functions on the free group $F_n$ and the free monoid $M_n$ for $n geq 2$. Two such sums are considered equivalent if they differ by a bounded function. We find the complete set of linear relations between equivalence classes of sums of counting functions and apply this result to construct an explicit basis for the vector space of such equivalence classes. Moreover, we provide a graphical algorithm to determine whether two given sums of counting functions are equivalent. In particular, this yields an algorithm to decide whether two sums of Brooks quasimorphisms on $F_n$ represent the same class in bounded cohomology.



قيم البحث

اقرأ أيضاً

A $k$-free like group is a $k$-generated group $G$ with a sequence of $k$-element generating sets $Z_n$ such that the girth of $G$ relative to $Z_n$ is unbounded and the Cheeger constant of $G$ relative to $Z_n$ is bounded away from 0. By a recent re sult of Benjamini-Nachmias-Peres, this implies that the critical bond percolation probability of the Cayley graph of $G$ relative to $Z_n$ tends to $1/(2k-1)$ as $nto infty$. Answering a question of Benjamini, we construct many non-free groups that are $k$-free like for all sufficiently large $k$.
103 - Tara Brough 2018
This paper considers the word problem for free inverse monoids of finite rank from a language theory perspective. It is shown that no free inverse monoid has context-free word problem; that the word problem of the free inverse monoid of rank $1$ is b oth $2$-context-free (an intersection of two context-free languages) and ET0L; that the co-word problem of the free inverse monoid of rank $1$ is context-free; and that the word problem of a free inverse monoid of rank greater than $1$ is not poly-context-free.
232 - Eric Jaligot 2008
We build two non-abelian CSA-groups in which maximal abelian subgroups are conjugate and divisible.
The congruence subgroup problem for a finitely generated group $Gamma$ asks whether $widehat{Autleft(Gammaright)}to Aut(hat{Gamma})$ is injective, or more generally, what is its kernel $Cleft(Gammaright)$? Here $hat{X}$ denotes the profinite completi on of $X$. In this paper we first give two new short proofs of two known results (for $Gamma=F_{2}$ and $Phi_{2}$) and a new result for $Gamma=Phi_{3}$: 1. $Cleft(F_{2}right)=left{ eright}$ when $F_{2}$ is the free group on two generators. 2. $Cleft(Phi_{2}right)=hat{F}_{omega}$ when $Phi_{n}$ is the free metabelian group on $n$ generators, and $hat{F}_{omega}$ is the free profinite group on $aleph_{0}$ generators. 3. $Cleft(Phi_{3}right)$ contains $hat{F}_{omega}$. Results 2. and 3. should be contrasted with an upcoming result of the first author showing that $Cleft(Phi_{n}right)$ is abelian for $ngeq4$.
Let $F$ be a free group of finite rank. We say that the monomorphism problem in $F$ is decidable if for any two elements $u$ and $v$ in $F$, there is an algorithm that determines whether there exists a monomorphism of $F$ that sends $u$ to $v$. In th is paper we show that the monomorphism problem is decidable and we provide an effective algorithm that solves the problem.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا