ﻻ يوجد ملخص باللغة العربية
We study uniform and non-uniform model sets in arbitrary locally compact second countable (lcsc) groups, which provide a natural generalization of uniform model sets in locally compact abelian groups as defined by Meyer and used as mathematical models of quasi-crystals. We then define a notion of auto-correlation for subsets of finite local complexitiy in arbitrary lcsc groups, which generalizes Hofs classical definition beyond the class of amenable groups, and provide a formula for the auto-correlation of a regular model set. Along the way we show that the punctured hull of an arbitrary regular model set admits a unique invariant probability measure, even in the case where the punctured hull is non-compact and the group is non-amenable. In fact this measure is also the unique stationary measure with respect to any admissible probability measure.
We define spherical diffraction measures for a wide class of weighted point sets in commutative spaces, i.e. proper homogeneous spaces associated with Gelfand pairs. In the case of the hyperbolic plane we can interpret the spherical diffraction measu
We study the auto-correlation measures of invariant random point processes in the hyperbolic plane which arise from various classes of aperiodic Delone sets. More generally, we study auto-correlation measures for large classes of Delone sets in (and
The theory of regular model sets is highly developed, but does not cover examples such as the visible lattice points, the k-th power-free integers, or related systems. They belong to the class of weak model sets, where the window may have a boundary
The well-known plastic number substitution gives rise to a ternary inflation tiling of the real line whose inflation factor is the smallest Pisot-Vijayaraghavan number. The corresponding dynamical system has pure point spectrum, and the associated co
Consider the extended hull of a weak model set together with its natural shift action. Equip the extended hull with the Mirsky measure, which is a certain natural pattern frequency measure. It is known that the extended hull is a measure-theoretic fa