ترغب بنشر مسار تعليمي؟ اضغط هنا

We present preliminary results of terrestrial planet formation using on the one hand classical numerical integration of hundreds of small bodies on CPUs and on the other hand -- for comparison reasons -- the results of our GPU code with thousands of small bodies which then merge to larger ones. To be able to determine the outcome of collision events we use our smooth particle hydrodynamics (SPH) code which tracks how water is lost during such events.
As part of a national scientific network Pathways to Habitability the formation of planets and the delivery of water onto these planets is a key question as water is essential for the development of life. In the first part of the paper we summarize t he state of the art of planet formation - which is still under debate in the astronomical community - before we show our results on this topic. The outcome of our numerical simulations depends a lot on the choice of the initial distribution of planetesimals and planetary embryos after gas disappeared in the protoplanetary disk. We also take into account that some of these planetesimals of sizes in the order of the mass of the Moon already contained water; the quantity depends on the distance from the Sun - close-by bodies are dry, but starting from a distance of about 2 AU they can contain substantial amounts of water. We assume that the gas giants and terrestrial planets are already formed when we check the collisions of the small bodies containing water (in the order of a few percent) with the terrestrial planets. We thus are able to give an estimate of the respective contribution to the actual water content (of some Earth-oceans) in the mantle, in the crust and on the surface of Earth. In the second part we discuss in more detail how the formation of larger bodies after a collision may happen as the outcome depends on parameters like collision velocity, impact angle, and the materials involved. We present results obtained by SPH (Smooth Particle Hydrodynamics) simulations. We briefly describe this method and show different scenarios with respect to the formed bodies, possible fragmentation and the water content before and after the collision. In an appendix we discuss detection methods for extrasolar planets (close to 2000 such objects have been discovered so far).
We investigate the outcome of collisions of Ceres-sized planetesimals composed of a rocky core and a shell of water ice. These collisions are not only relevant for explaining the formation of planetary embryos in early planetary systems, but also pro vide insight into the formation of asteroid families and possible water transport via colliding small bodies. Earlier studies show characteristic collision velocities exceeding the bodies mutual escape velocity which - along with the distribution of the impact angles - cover the collision outcome regimes partial accretion, erosion, and hit-and-run leading to different expected fragmentation scenarios. Existing collision simulations use bodies composed of strengthless material; we study the distribution of fragments and their water contents considering the full elasto-plastic continuum mechanics equations also including brittle failure and fragmentation.
We investigate the distribution of encounter velocities and impact angles describing collisions in the habitable zone of the early planetary system. Here we present a catalogue of collision characteristics for a particular mass ratio of the colliding bodies and seven different planetesimal masses ranging from a tenth of Ceres mass to 10 times the mass of the Moon. We show that there are virtually no collisions with impact speeds lower than the surface escape velocity and a similar velocity-impact angle distribution for different planetesimal masses if velocities are normalized using the escape velocity. An additional perturbing Jupiter-like object distorts the collision velocity and impact picture in the sense that grazing impacts at higher velocities are promoted if the perturbers orbit is close to the habitable zone whereas a more distant perturber has more the effect of a mere widening of the velocity dispersion.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا