ترغب بنشر مسار تعليمي؟ اضغط هنا

Planetary Systems and the Formation of Habitable Planets

76   0   0.0 ( 0 )
 نشر من قبل Thomas I. Maindl
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

As part of a national scientific network Pathways to Habitability the formation of planets and the delivery of water onto these planets is a key question as water is essential for the development of life. In the first part of the paper we summarize the state of the art of planet formation - which is still under debate in the astronomical community - before we show our results on this topic. The outcome of our numerical simulations depends a lot on the choice of the initial distribution of planetesimals and planetary embryos after gas disappeared in the protoplanetary disk. We also take into account that some of these planetesimals of sizes in the order of the mass of the Moon already contained water; the quantity depends on the distance from the Sun - close-by bodies are dry, but starting from a distance of about 2 AU they can contain substantial amounts of water. We assume that the gas giants and terrestrial planets are already formed when we check the collisions of the small bodies containing water (in the order of a few percent) with the terrestrial planets. We thus are able to give an estimate of the respective contribution to the actual water content (of some Earth-oceans) in the mantle, in the crust and on the surface of Earth. In the second part we discuss in more detail how the formation of larger bodies after a collision may happen as the outcome depends on parameters like collision velocity, impact angle, and the materials involved. We present results obtained by SPH (Smooth Particle Hydrodynamics) simulations. We briefly describe this method and show different scenarios with respect to the formed bodies, possible fragmentation and the water content before and after the collision. In an appendix we discuss detection methods for extrasolar planets (close to 2000 such objects have been discovered so far).

قيم البحث

اقرأ أيضاً

113 - Ji Jianghui 2009
We perform numerical simulations to study the Habitable zones (HZs) and dynamical structure for Earth-mass planets in multiple planetary systems. For example, in the HD 69830 system, we extensively explore the planetary configuration of three Neptune -mass companions with one massive terrestrial planet residing in 0.07 AU $leq a leq$ 1.20 AU, to examine the asteroid structure in this system. We underline that there are stable zones of at least $10^5$ yr for low-mass terrestrial planets locating between 0.3 and 0.5 AU, and 0.8 and 1.2 AU with final eccentricities of $e < 0.20$. Moreover, we also find that the accumulation or depletion of the asteroid belt are also shaped by orbital resonances of the outer planets, for example, the asteroidal gaps at 2:1 and 3:2 mean motion resonances (MMRs) with Planet C, and 5:2 and 1:2 MMRs with Planet D. In a dynamical sense, the proper candidate regions for the existence of the potential terrestrial planets or HZs are 0.35 AU $< a < $ 0.50 AU, and 0.80 AU $< a < $ 1.00 AU for relatively low eccentricities, which makes sense to have the possible asteroidal structure in this system.
An increasing number of potentially habitable terrestrial planets and planet candidates are found by ongoing planet search programs. The search for atmospheric signatures to establish planetary habitability and the presence of life might be possible in the future. We want to quantify the accuracy of retrieved atmospheric parameters which might be obtained from infrared emission spectroscopy. We use synthetic observations of hypothetical habitable planets, constructed with a parametrized atmosphere model, a high-resolution radiative transfer model and a simplified noise model. Classic statistical tools such as chi2 statistics and least-square fits were used to analyze the simulated observations. When adopting the design of currently planned or proposed exoplanet characterization missions, we find that emission spectroscopy could provide weak limits on surface conditions of terrestrial planets, hence their potential habitability. However, these mission designs are unlikely to allow to characterize the composition of the atmosphere of a habitable planet, even though CO2 is detected. Upon increasing the signal-to-noise ratios by about a factor of 2-5 (depending on spectral resolution) compared to current mission designs, the CO2 content could be characterized to within two orders of magnitude. The detection of the O3 biosignature remains marginal. The atmospheric temperature structure could not be constrained. Therefore, a full atmospheric characterization seems to be beyond the capabilities of such missions when using only emission spectroscopy during secondary eclipse or target visits. Other methods such as transmission spectroscopy or orbital photometry are probably needed in order to give additional constraints and break degeneracies. (abridged)
The presented work investigates the possible formation of terrestrial planets in the habitable zone (HZ) of the exoplanetary system HD 141399. In this system the HZ is located approximately between the planets c (a = 0.7 au) and d (a = 2.1 au). Exten sive numerical integrations of the equations of motion in the pure Newtonian framework of small bodies with different initial conditions in the HZ are performed. Our investigations included several steps starting with 500 massless bodies distributed between planets c and d in order to model the development of the disk of small bodies. It turns out that after some 10^6 years a belt-like structure analogue to the main belt inside Jupiter in our Solar System appears. We then proceed with giving the small bodies masses (Moon-mass) and take into account the gravitational interaction between these planetesimal-like objects. The growing of the objects - with certain percentage of water - due to collisions is computed in order to look for the formation of terrestrial planets. We observe that planets form in regions connected to mean motion resonances (MMR). So far there is no observational evidence of terrestrial planets in the system of HD 141399 but from our results we can conclude that the formation of terrestrial planets - even with an appropriate amount of water necessary for being habitable - in the HZ would have been possible.
The Kepler-1647 is a binary system with two Sun-type stars (approximately 1.22 and 0.97 Solar mass). It has the most massive circumbinary planet (1.52 Jupiter mass) with the longest orbital period (1,107.6 days) detected by the Kepler probe and is lo cated within the habitable zone (HZ) of the system. In this work, we investigated the ability to form and house an Earth-sized planet within its HZ. First, we computed the limits of its HZ and performed numerical stability tests within that region. We found that HZ has three sub-regions that show stability, one internal, one co-orbital, and external to the host planet Kepler-1647b. Within the limits of these three regions, we performed numerical simulations of planetary formation. In the regions inner and outer to the planet, we used two different density profiles to explore different conditions of formation. In the co-orbital region, we used eight different values of total disc mass. We showed that many resonances are located within regions causing much of the disc material to be ejected before a planet is formed. Thus, the system might have two asteroid belts with Kirkwood gaps, similar to the Solar Systems main belt of asteroids. The co-orbital region proved to be extremely sensitive, not allowing the planet formation, but showing that this binary system has the capacity to have Trojan bodies. Finally, we looked for regions of stability for an Earth-sized moon. We found that there is stability for a moon with this mass up to 0.4 Hills radius from the host planet.
We present the results of a study of the prospect of detecting habitable Trojan planets in the Kepler Habitable Zone circumbinary planetary systems (Kepler-16, -47, -453, -1647, -1661). We integrated the orbits of 10,000 separate N-body systems (N=4, 6), each with a one Earth-mass body in a randomly selected orbit near the L4 and L5 Lagrangian points of the host HZ circumbinary planet. We find that stable Trojan planets are restricted to a narrow range of semimajor axes in all five systems and limited to small eccentricities in Kepler-16, -47, and -1661. To assess the prospect of the detection of these habitable Trojan planets, we calculated the amplitudes of the variations they cause in the transit timing of their host bodies. Results show that the mean amplitudes of the transit timing variations (TTVs) correlate with the mass of the transiting planet and range from 70 minutes for Kepler-16b to 390 minutes for Kepler-47c. Our analysis indicates that the TTVs of the circumbinary planets caused by these Trojan bodies fall within the detectable range of timing precision obtained from the Kepler telescopes long-cadence data. The latter points to Kepler data as a viable source to search for habitable Trojan planets.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا