ترغب بنشر مسار تعليمي؟ اضغط هنا

Collisions of planetesimals and formation of planets

115   0   0.0 ( 0 )
 نشر من قبل Thomas I. Maindl
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present preliminary results of terrestrial planet formation using on the one hand classical numerical integration of hundreds of small bodies on CPUs and on the other hand -- for comparison reasons -- the results of our GPU code with thousands of small bodies which then merge to larger ones. To be able to determine the outcome of collision events we use our smooth particle hydrodynamics (SPH) code which tracks how water is lost during such events.



قيم البحث

اقرأ أيضاً

94 - S. I. Ipatov 2020
Migration of planetesimals from the feeding zone of the terrestrial planets, which was divided into seven regions depending on the distance to the Sun, was simulated. The influence of gravity of all planets was taken into account. In some cases, the embryos of the terrestrial planets rather than the planets themselves were considered; their masses were assumed to be 0.1 or 0.3 of the current masses of the planets. The arrays of orbital elements of migrated planetesimals were used to calculate the probabilities of their collisions with the planets, the Moon, or their embryos. Based on our calculations, we drew conclusions on the process of accumulation of the terrestrial planets. The embryos of the terrestrial planets, the masses of which did not exceed a tenth of the current planetary masses, accumulated planetesimals mainly from the vicinity of their orbits. When planetesimals fell onto the embryos of the terrestrial planets from the feeding zone of Jupiter and Saturn, these embryos had not yet acquired the current masses of the planets, and the material of this zone (including water and volatiles) could be accumulated in the inner layers of the terrestrial planets. The inner layers of each of the terrestrial planets were mainly formed from the material located in the vicinity of the orbit of a certain planet. The outer layers of the Earth and Venus could accumulate the same material for these two planets from different parts of the feeding zone of the terrestrial planets. The Earth and Venus could acquire more than half of their masses in 5 Myr. A relatively rapid growth of the bulk of the Martian mass can be explained by the formation of Mars embryo (the mass of which is several times less than that of Mars) due to contraction of a rarefied condensation.
We present the Superparticle Model/Algorithm for Collisions in Kuiper belts and debris disks (SMACK), a new method for simultaneously modeling, in 3-D, the collisional and dynamical evolution of planetesimals in a debris disk with planets. SMACK can simulate azimuthal asymmetries and how these asymmetries evolve over time. We show that SMACK is stable to numerical viscosity and numerical heating over 10^7 yr, and that it can reproduce analytic models of disk evolution. We use SMACK to model the evolution of a debris ring containing a planet on an eccentric orbit. Differential precession creates a spiral structure as the ring evolves, but collisions subsequently break up the spiral, leaving a narrower eccentric ring.
In this paper we extend our numerical method for simulating terrestrial planet formation from Leinhardt and Richardson (2005) to include dynamical friction from the unresolved debris component. In the previous work we implemented a rubble pile planet esimal collision model into direct N-body simulations of terrestrial planet formation. The new collision model treated both accretion and erosion of planetesimals but did not include dynamical friction from debris particles smaller than the resolution limit for the simulation. By extending our numerical model to include dynamical friction from the unresolved debris, we can simulate the dynamical effect of debris produced during collisions and can also investigate the effect of initial debris mass on terrestrial planet formation. We find that significant initial debris mass, 10% or more of the total disk mass, changes the mode of planetesimal growth. Specifically, planetesimals in this situation do not go through a runaway growth phase. Instead they grow concurrently, similar to oligarchic growth. In addition to including the dynamical friction from the unresolved debris, we have implemented particle tracking as a proxy for monitoring compositional mixing. Although there is much less mixing due to collisions and gravitational scattering when dynamical friction of the background debris is included, there is significant inward migration of the largest protoplanets in the most extreme initial conditions.
123 - Nader Haghighipour 2013
Super-Earths, objects slightly larger than Earth and slightly smaller than Uranus, have found a special place in exoplanetary science. As a new class of planetary bodies, these objects have challenged models of planet formation at both ends of the sp ectrum and have triggered a great deal of research on the composition and interior dynamics of rocky planets in connection to their masses and radii. Being relatively easier to detect than an Earth-sized planet at 1 AU around a G star, super-Earths have become the focus of worldwide observational campaigns to search for habitable planets. With a range of masses that allows these objects to retain moderate atmospheres and perhaps even plate tectonics, super-Earths may be habitable if they maintain long-term orbits in the habitable zones of their host stars. Given that in the past two years a few such potentially habitable super-Earths have in fact been discovered, it is necessary to develop a deep understanding of the formation and dynamical evolution of these objects. This article reviews the current state of research on the formation of super-Earths and discusses different models of their formation and dynamical evolution.
As part of a national scientific network Pathways to Habitability the formation of planets and the delivery of water onto these planets is a key question as water is essential for the development of life. In the first part of the paper we summarize t he state of the art of planet formation - which is still under debate in the astronomical community - before we show our results on this topic. The outcome of our numerical simulations depends a lot on the choice of the initial distribution of planetesimals and planetary embryos after gas disappeared in the protoplanetary disk. We also take into account that some of these planetesimals of sizes in the order of the mass of the Moon already contained water; the quantity depends on the distance from the Sun - close-by bodies are dry, but starting from a distance of about 2 AU they can contain substantial amounts of water. We assume that the gas giants and terrestrial planets are already formed when we check the collisions of the small bodies containing water (in the order of a few percent) with the terrestrial planets. We thus are able to give an estimate of the respective contribution to the actual water content (of some Earth-oceans) in the mantle, in the crust and on the surface of Earth. In the second part we discuss in more detail how the formation of larger bodies after a collision may happen as the outcome depends on parameters like collision velocity, impact angle, and the materials involved. We present results obtained by SPH (Smooth Particle Hydrodynamics) simulations. We briefly describe this method and show different scenarios with respect to the formed bodies, possible fragmentation and the water content before and after the collision. In an appendix we discuss detection methods for extrasolar planets (close to 2000 such objects have been discovered so far).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا