ترغب بنشر مسار تعليمي؟ اضغط هنا

Collision parameters governing water delivery and water loss in early planetary systems

84   0   0.0 ( 0 )
 نشر من قبل Thomas I. Maindl
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate the distribution of encounter velocities and impact angles describing collisions in the habitable zone of the early planetary system. Here we present a catalogue of collision characteristics for a particular mass ratio of the colliding bodies and seven different planetesimal masses ranging from a tenth of Ceres mass to 10 times the mass of the Moon. We show that there are virtually no collisions with impact speeds lower than the surface escape velocity and a similar velocity-impact angle distribution for different planetesimal masses if velocities are normalized using the escape velocity. An additional perturbing Jupiter-like object distorts the collision velocity and impact picture in the sense that grazing impacts at higher velocities are promoted if the perturbers orbit is close to the habitable zone whereas a more distant perturber has more the effect of a mere widening of the velocity dispersion.

قيم البحث

اقرأ أيضاً

Protoplanetary disks are dust-rich structures around young stars. The crystalline and amorphous materials contained within these disks are variably thermally processed and accreted to make bodies of a wide range of sizes and compositions, depending o n the heliocentric distance of formation. The chondritic meteorites are fragments of relatively small and undifferentiated bodies, and the minerals that they contain carry chemical signatures providing information about the early environment available for planetesimal formation. A current hot topic of debate is the delivery of volatiles to terrestrial planets, understanding that they were built from planetesimals formed under far more reducing conditions than the primordial carbonaceous chondritic bodies. In this review, we describe significant evidence for the accretion of ices and hydrated minerals in the outer protoplanetary disk. In that distant region highly porous and fragile carbon and water-rich transitional asteroids formed, being the parent bodies of the carbonaceous chondrites (CCs). CCs are undifferentiated meteorites that never melted but experienced other physical processes including thermal and aqueous alteration. Recent evidence indicates that few of them have escaped significant alteration, retaining unique features that can be interpreted as evidence of wet accretion. Some examples of carbonaceous chondrite parent body aqueous alteration will be presented. Finally, atomistic interpretations of the first steps leading to water-mediated alteration during the accretion of CCs are provided and discussed. From these new insights into the water retained in CCs we can decipher the pathways of delivery of volatiles to the terrestrial planets.
Collisions between large, similar-sized bodies are believed to shape the final characteristics and composition of terrestrial planets. Their inventories of volatiles such as water, are either delivered or at least significantly modified by such event s. Besides the transition from accretion to erosion with increasing impact velocity, similar-sized collisions can also result in hit-and-run outcomes for sufficiently oblique impact angles and large enough projectile-to-target mass ratios. We study volatile transfer and loss focusing on hit-and-run encounters by means of Smooth Particle Hydrodynamics simulations, including all main parameters: impact velocity, impact angle, mass ratio, and also the total colliding mass. We find a broad range of overall water losses, up to 75% in the most energetic hit-and-run events, and confirm the much more severe consequences for the smaller body also for stripping of volatile layers. Transfer of water between projectile and target inventories is found to be mostly rather inefficient, and final water contents are dominated by pre-collision inventories reduced by impact losses, for similar pre-collision water mass fractions. Comparison with our numerical results shows that current collision outcome models are not accurate enough to reliably predict these composition changes in hit-and-run events. To also account for non-mechanical losses we estimate the amount of collisionally vaporized water over a broad range of masses, and find that these contributions are particularly important in collisions of ~Mars-sized bodies, with sufficiently high impact energies, but still relatively low gravity. Our results clearly indicate that the cumulative effect of several (hit-and-run) collisions can efficiently strip protoplanets of their volatile layers, especially the smaller body, as it might be common e.g. for Earth-mass planets in systems with Super-Earths.
The planetary building blocks that formed in the terrestrial planet region were likely very dry, yet water is comparatively abundant on Earth. We review the various mechanisms proposed for the origin of water on the terrestrial planets. Various in-si tu mechanisms have been suggested, which allow for the incorporation of water into the local planetesimals in the terrestrial planet region or into the planets themselves from local sources, although all of those mechanisms have difficulties. Comets have also been proposed as a source, although there may be problems fitting isotopic constraints, and the delivery efficiency is very low, such that it may be difficult to deliver even a single Earth ocean of water this way. The most promising route for water delivery is the accretion of material from beyond the snow line, similar to carbonaceous chondrites, that is scattered into the terrestrial planet region as the planets are growing. Two main scenarios are discussed in detail. First is the classical scenario in which the giant planets begin roughly in their final locations and the disk of planetesimals and embryos in the terrestrial planet region extends all the way into the outer asteroid belt region. Second is the Grand Tack scenario, where early inward and outward migration of the giant planets implants material from beyond the snow line into the asteroid belt and terrestrial planet region, where it can be accreted by the growing planets. Sufficient water is delivered to the terrestrial planets in both scenarios. While the Grand Tack scenario provides a better fit to most constraints, namely the small mass of Mars, planets may form too fast in the nominal case discussed here. This discrepancy may be reduced as a wider range of initial conditions is explored. Finally, we discuss several more recent models that may have important implications for water delivery to the terrestrial planets.
From modeling the evolution of disks of planetesimals under the influence of planets, it has been shown that the mass of water delivered to the Earth from beyond Jupiters orbit could be comparable to the mass of terrestrial oceans. A considerable por tion of the water could have been delivered to the Earths embryo, when its mass was smaller than the current mass of the Earth. While the Earths embryo mass was growing to half the current mass of the Earth, the mass of water delivered to the embryo could be near 30% of the total amount of water delivered to the Earth from the feeding zone of Jupiter and Saturn. Water of the terrestrial oceans could be a result of mixing the water from several sources with higher and lower D/H ratios. The mass of water delivered to Venus from beyond Jupiters orbit was almost the same as that for the Earth, if normalized to unit mass of the planet. The analogous per-unit mass of water delivered to Mars was two-three times as much as that for the Earth. The mass of water delivered to the Moon from beyond Jupiters orbit could be less than that for the Earth by a factor not more than 20.
The water content of magma oceans is widely accepted as a key factor that determines whether a terrestrial planet is habitable. Water ocean mass is determined as a result not only of water delivery and loss, but also of water partitioning among sever al reservoirs. Here we review our current understanding of water partitioning among the atmosphere, magma ocean, and solid mantle of accreting planetary embryos and protoplanets just after giant collisions. Magma oceans are readily formed in planetary embryos and protoplanets in their accretion phase. Significant amounts of water are partitioned into magma oceans, provided the planetary building blocks are water-rich enough. Particularly important but still quite uncertain issues are how much water the planetary building blocks contain initially and how water goes out of the solidifying mantle and is finally degassed to the atmosphere. Constraints from both solar-system explorations and exoplanet observations and also from laboratory experiments are needed to resolve these issues.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا