ترغب بنشر مسار تعليمي؟ اضغط هنا

The Dark Matter Time Projection Chamber (DMTPC) experiment uses CF_4 gas at low pressure (0.1 atm) to search for the directional signature of Galactic WIMP dark matter. We describe the DMTPC apparatus and summarize recent results from a 35.7 g-day ex posure surface run at MIT. After nuclear recoil cuts are applied to the data, we find 105 candidate events in the energy range 80 - 200 keV, which is consistent with the expected cosmogenic neutron background. Using this data, we obtain a limit on the spin-dependent WIMP-proton cross-section of 2.0 times 10^{-33} cm^2 at a WIMP mass of 115 GeV/c^2. This detector is currently deployed underground at the Waste Isolation Pilot Plant in New Mexico.
The Dark Matter Time Projection Chamber (DMTPC) is a low pressure (75 Torr CF4) 10 liter detector capable of measuring the vector direction of nuclear recoils with the goal of directional dark matter detection. In this paper we present the first dark matter limit from DMTPC. In an analysis window of 80-200 keV recoil energy, based on a 35.7 g-day exposure, we set a 90% C.L. upper limit on the spin-dependent WIMP-proton cross section of 2.0 x 10^{-33} cm^{2} for 115 GeV/c^2 dark matter particle mass.
By correlating nuclear recoil directions with the Earths direction of motion through the Galaxy, a directional dark matter detector can unambiguously detect Weakly Interacting Massive Particles (WIMPs), even in the presence of backgrounds. Here, we d escribe the Dark Matter Time-Projection Chamber (DMTPC) detector, a TPC filled with CF4 gas at low pressure (0.1 atm). Using this detector, we have measured the vector direction (head-tail) of nuclear recoils down to energies of 100 keV with an angular resolution of <15 degrees. To study our detector backgrounds, we have operated in a basement laboratory on the MIT campus for several months. We are currently building a new, high-radiopurity detector for deployment underground at the Waste Isolation Pilot Plant facility in New Mexico.
Carbon-tetrafluoride (CF4) is used as a counting gas in particle detectors, but some of its properties that are of interest for large time-projection chambers are not well known. We measure the mean energy, which is proportional to the diffusion coef ficent, and the attentuation coefficient of electron propagation in CF4 gas using a 10-liter dark matter detector prototype of the DMTPC project.
The DMTPC detector is a low-pressure CF4 TPC with optical readout for directional detection of Dark Matter. The combination of the energy and directional tracking information allows for an efficient suppression of all backgrounds. The choice of gas ( CF4) makes this detector particularly sensitive to spin-dependent interactions.
Directional detection of Dark Matter allows for unambiguous direct detection of WIMPs as well as discrimination between various Dark Matter models in our galaxy. The DMTPC detector is a low-pressure TPC with optical readout designed for directional d irect detection of WIMPs. By using CF4 gas as the active material, the detector also has excellent sensitivity to spin-dependent interactions of Dark Matter on protons.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا