ترغب بنشر مسار تعليمي؟ اضغط هنا

The DMTPC project

132   0   0.0 ( 0 )
 نشر من قبل Gabriella Sciolla
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The DMTPC detector is a low-pressure CF4 TPC with optical readout for directional detection of Dark Matter. The combination of the energy and directional tracking information allows for an efficient suppression of all backgrounds. The choice of gas (CF4) makes this detector particularly sensitive to spin-dependent interactions.



قيم البحث

اقرأ أيضاً

The Dark Matter Time Projection Chamber (DMTPC) experiment uses CF_4 gas at low pressure (0.1 atm) to search for the directional signature of Galactic WIMP dark matter. We describe the DMTPC apparatus and summarize recent results from a 35.7 g-day ex posure surface run at MIT. After nuclear recoil cuts are applied to the data, we find 105 candidate events in the energy range 80 - 200 keV, which is consistent with the expected cosmogenic neutron background. Using this data, we obtain a limit on the spin-dependent WIMP-proton cross-section of 2.0 times 10^{-33} cm^2 at a WIMP mass of 115 GeV/c^2. This detector is currently deployed underground at the Waste Isolation Pilot Plant in New Mexico.
The measurement of the diffuse $21$-cm radiation from the hyperfine transition of neutral hydrogen (HI signal) in different redshifts is an important tool for modern cosmology. However, detecting this faint signal with non-cryogenic receivers in sing le-dish telescopes is a challenging task. The BINGO (Baryon Acoustic Oscillations from Integrated Neutral Gas Observations) radio telescope is an instrument designed to detect baryonic acoustic oscillations (BAO) in the cosmological HI signal, in the redshift interval $0.127 le z le 0.449$. This paper describes the BINGO radio telescope, including the current status of the optics, receiver, observational strategy, calibration and the site. BINGO has been carefully designed to minimize systematics, being a transit instrument with no moving dishes and 28 horns operating in the frequency range $980 le u le 1260$ MHz. Comprehensive laboratory tests were conducted for many of the BINGO subsystems and the prototypes of the receiver chain, horn, polarizer, magic tees and transitions have been successfully tested between 2018-2020. The survey was designed to cover $sim 13%$ of the sky, with the primary mirror pointing at declination $delta=-15^{circ}$. The telescope will see an instantaneous declination strip of $14.75^{circ}$. The results of the prototype tests closely meet those obtained during the modelling process, suggesting BINGO will perform according to our expectations. After one year of observations with a 60% duty cycle, BINGO should achieve an expected sensitivity of $102 mu K$ for 28 horns and 30 redshift bins, considering one polarization and be able to measure the HI power spectrum in a competitive time frame.
We propose an experiment, the Cosmic Accelerometer, designed to yield velocity precision of $leq 1$ cm/s with measurement stability over years to decades. The first-phase Cosmic Accelerometer, which is at the scale of the Astro2020 Small programs, wi ll be ideal for precision radial velocity measurements of terrestrial exoplanets in the Habitable Zone of Sun-like stars. At the same time, this experiment will serve as the technical pathfinder and facility core for a second-phase larger facility at the Medium scale, which can provide a significant detection of cosmological redshift drift on a 6-year timescale. This larger facility will naturally provide further detection/study of Earth twin planet systems as part of its external calibration process. This experiment is fundamentally enabled by a novel low-cost telescope technology called PolyOculus, which harnesses recent advances in commercial off the shelf equipment (telescopes, CCD cameras, and control computers) combined with a novel optical architecture to produce telescope collecting areas equivalent to standard telescopes with large mirror diameters. Combining a PolyOculus array with an actively-stabilized high-precision radial velocity spectrograph provides a unique facility with novel calibration features to achieve the performance requirements for the Cosmic Accelerometer.
OTELO is an emission-line object survey carried out with the red tunable filter of the instrument OSIRIS at the GTC, whose aim is to become the deepest emission-line object survey to date. With 100% of the data of the first pointing finally obtained in June 2014, we present here some aspects of the processing of the data and the very first results of the OTELO survey. We also explain the next steps to be followed in the near future.
We describe the design, operation, and first results of a photometric calibration project, called DICE (Direct Illumination Calibration Experiment), aiming at achieving precise instrumental calibration of optical telescopes. The heart of DICE is an i llumination device composed of 24 narrow-spectrum, high-intensity, light-emitting diodes (LED) chosen to cover the ultraviolet-to-near-infrared spectral range. It implements a point-like source placed at a finite distance from the telescope entrance pupil, yielding a flat field illumination that covers the entire field of view of the imager. The purpose of this system is to perform a lightweight routine monitoring of the imager passbands with a precision better than 5 per-mil on the relative passband normalisations and about 3{AA} on the filter cutoff positions. The light source is calibrated on a spectrophotometric bench. As our fundamental metrology standard, we use a photodiode calibrated at NIST. The radiant intensity of each beam is mapped, and spectra are measured for each LED. All measurements are conducted at temperatures ranging from 0{deg}C to 25{deg}C in order to study the temperature dependence of the system. The photometric and spectroscopic measurements are combined into a model that predicts the spectral intensity of the source as a function of temperature. We find that the calibration beams are stable at the $10^{-4}$ level -- after taking the slight temperature dependence of the LED emission properties into account. We show that the spectral intensity of the source can be characterised with a precision of 3{AA} in wavelength. In flux, we reach an accuracy of about 0.2-0.5% depending on how we understand the off-diagonal terms of the error budget affecting the calibration of the NIST photodiode. With a routine 60-mn calibration program, the apparatus is able to constrain the passbands at the targeted precision levels.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا