ترغب بنشر مسار تعليمي؟ اضغط هنا

Transport properties of electrons in CF4

49   0   0.0 ( 0 )
 نشر من قبل Denis Dujmic
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Carbon-tetrafluoride (CF4) is used as a counting gas in particle detectors, but some of its properties that are of interest for large time-projection chambers are not well known. We measure the mean energy, which is proportional to the diffusion coefficent, and the attentuation coefficient of electron propagation in CF4 gas using a 10-liter dark matter detector prototype of the DMTPC project.

قيم البحث

اقرأ أيضاً

52 - A. Kaboth , J. Monroe , S. Ahlen 2008
This paper presents a measurement of the ratio of photon to electron production and the scintillation spectrum in a popular gas for time pro jection chambers, carbon tetrafluoride (CF4), over the range of 200 to 800 nm; the ratio is measured to be 0. 34+/-0.04. This result is of particular importance for a new generation of dark matter time projection chambers with directional sensitivity which use CF4 as a fill gas.
Argon with an admixture of CF4 is expected to be a good candidate for the gas mixture to be used for a time projection chamber (TPC) in the future linear collider experiment because of its small transverse diffusion of drift electrons especially unde r a strong magnetic field. In order to confirm the superiority of this gas mixture over conventional TPC gases we carried out cosmic ray tests using a GEM-based TPC operated mostly in Ar-CF4-isobutane mixtures under 0 - 1 T axial magnetic fields. The measured gas properties such as gas gain and transverse diffusion constant as well as the observed spatial resolution are presented.
106 - A. Kozlov 2003
Results obtained with a triple GEM detector operated in pure CF4 with and without a reflective CsI photocathode are presented. The detector operates in a stable mode at gains up to 10^4. A deviation from exponential growth starts to develop when the total charge exceeds ~ 4 10^6 e leading to gain saturation when the total charge is ~ 2 10^7 e and making the structure relatively robust against discharges. No aging effects are observed in the GEM foils after a total accumulated charge of ~ 10 mC/cm^2 at the anode. The ion back-flow current to the reflective photocathode is comparable to the electron current to the anode. However, no significant degradation of the CsI photocathode is observed for a total ion back-flow charge of ~ 7 mC/cm^2.
The spatial resolution along the pad-row direction was measured with a GEM-based TPC prototype for the future linear collider experiment in order to understand its performance for tracks with finite projected angles with respect to the pad-row normal . The degradation of the resolution due to the angular pad effect was confirmed to be consistent with the prediction of a simple calculation taking into account the cluster-size distribution and the avalanche fluctuation.
Bismuth crystal is known for its remarkable properties resulting from particular electronic states, e. g., the Shubnikov-de Haas effect and the de Haas-van Alphen effect. Above all, the large diamagnetism of bismuth had been a long-standing puzzle so on after the establishment of quantum mechanics, which had been resolved eventually in 1970 based on the effective Hamiltonian derived by Wolff as due to the interband effects of a magnetic field in the presence of a large spin-orbit interaction. This Hamiltonian is essentially the same as the Dirac Hamiltonian, but with spatial anisotropy and an effective velocity much smaller than the light velocity. This paper reviews recent progress in the theoretical understanding of transport and optical properties, such as the weak-field Hall effect together with the spin Hall effect, and ac conductivity, of a system described by the Wolff Hamiltonian and its isotropic version with a special interest of exploring possible relationship with orbital magnetism. It is shown that there exist a fundamental relationship between spin Hall conductivity and orbital susceptibility in the insulating state on one hand, and the possibility of fully spin-polarized electric current in magneto-optics. Experimental tests of these interesting features have been proposed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا