ترغب بنشر مسار تعليمي؟ اضغط هنا

First Dark Matter Search Results from a Surface Run of the 10-L DMTPC Directional Dark Matter Detector

149   0   0.0 ( 0 )
 نشر من قبل Jocelyn Monroe
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The Dark Matter Time Projection Chamber (DMTPC) is a low pressure (75 Torr CF4) 10 liter detector capable of measuring the vector direction of nuclear recoils with the goal of directional dark matter detection. In this paper we present the first dark matter limit from DMTPC. In an analysis window of 80-200 keV recoil energy, based on a 35.7 g-day exposure, we set a 90% C.L. upper limit on the spin-dependent WIMP-proton cross section of 2.0 x 10^{-33} cm^{2} for 115 GeV/c^2 dark matter particle mass.



قيم البحث

اقرأ أيضاً

By correlating nuclear recoil directions with the Earths direction of motion through the Galaxy, a directional dark matter detector can unambiguously detect Weakly Interacting Massive Particles (WIMPs), even in the presence of backgrounds. Here, we d escribe the Dark Matter Time-Projection Chamber (DMTPC) detector, a TPC filled with CF4 gas at low pressure (0.1 atm). Using this detector, we have measured the vector direction (head-tail) of nuclear recoils down to energies of 100 keV with an angular resolution of <15 degrees. To study our detector backgrounds, we have operated in a basement laboratory on the MIT campus for several months. We are currently building a new, high-radiopurity detector for deployment underground at the Waste Isolation Pilot Plant facility in New Mexico.
We report on the first dark-matter (DM) search results from PandaX-I, a low threshold dual-phase xenon experiment operating at the China Jinping Underground Laboratory. In the 37-kg liquid xenon target with 17.4 live-days of exposure, no DM particle candidate event was found. This result sets a stringent limit for low-mass DM particles and disfavors the interpretation of previously-reported positive experimental results. The minimum upper limit, $3.7times10^{-44}$,cm$^2$, for the spin-independent isoscalar DM-particle-nucleon scattering cross section is obtained at a DM-particle mass of 49,GeV/c$^2$ at 90% confidence level.
131 - Yue Meng , Zhou Wang , Yi Tao 2021
We report the first dark matter search results using the commissioning data from PandaX-4T. Using a time projection chamber with 3.7-tonne of liquid xenon target and an exposure of 0.63~tonne$cdot$year, 1058 candidate events are identified within an approximate electron equivalent energy window between 1 and 30 keV. No significant excess over background is observed. Our data set a stringent limit to the dark matter-nucleon spin-independent interactions, with a lowest excluded cross section (90% C.L.) of $3.3times10^{-47} $cm$^2$ at a dark matter mass of 30 GeV/$c^2$.
The addition of O2 to gas mixtures in time projection chambers containing CS2 has recently been shown to produce multiple negative ions that travel at slightly different velocities. This allows a measurement of the absolute position of ionising event s in the z (drift) direction. In this work, we apply the z-fiducialisation technique to a directional dark matter search. In particular, we present results from a 46.3 live-day source-free exposure of the DRIFT-IId detector run in this completely new mode. With full-volume fiducialisation, we have achieved the first background-free operation of a directional detector. The resulting exclusion curve for spin-dependent WIMP-proton interactions reaches 1.1 pb at 100 GeV/c2, a factor of 2 better than our previous work. We describe the automated analysis used here, and argue that detector upgrades, implemented after the acquisition of these data, will bring an additional factor of >3 improvement in the near future.
460 - S. Burgos , J. Forbes , C. Ghag 2007
Data from the DRIFT-IIa directional dark matter experiment are presented, collected during a near continuous 6 month running period. A detailed calibration analysis comparing data from gamma-ray, x-ray and neutron sources to a GEANT4 Monte Carlo simu lations reveals an efficiency for detection of neutron induced recoils of 94+/-2(stat.)+/-5(sys.)%. Software-based cuts, designed to remove non-nuclear recoil events, are shown to reject 60Co gamma-rays with a rejection factor of better than 8x10-6 for all energies above threshold. An unexpected event population has been discovered and is shown here to be due to the alpha-decay of 222Rn daughter nuclei that have attached to the central cathode. A limit on the flux of neutrons in the Boulby Underground Laboratory is derived from analysis of unshielded and shielded data.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا