ترغب بنشر مسار تعليمي؟ اضغط هنا

103 - T. Koch , J. Loos , 2013
We consider the steady-state thermoelectric transport through a vibrating molecular quantum dot that is contacted to macroscopic leads. For moderate electron-phonon interaction strength and comparable electronic and phononic timescales, we investigat e the impact of the formation of a local polaron on the thermoelectric properties of the junction. We apply a variational Lang-Firsov transformation and solve the equations of motion in the Kadanoff-Baym formalism up to second order in the dot-lead coupling parameter. We calculate the thermoelectric current and voltage for finite temperature differences in the resonant and inelastic tunneling regimes. For a near resonant dot level, the formation of a local polaron can boost the thermoelectric effect because of the Franck-Condon blockade. The line shape of the thermoelectric voltage signal becomes asymmetrical due to the varying polaronic character of the dot state and in the nonlinear transport regime, vibrational signatures arise.
63 - T. Koch , H. Fehske , 2012
We consider transport through a vibrating molecular quantum dot contacted to macroscopic leads acting as charge reservoirs. In the equilibrium and nonequilibrium regime, we study the formation of a polaron-like transient state at the quantum dot for all ratios of the dot-lead coupling to the energy of the local phonon mode. We show that the polaronic renormalization of the dot-lead coupling is a possible mechanism for negative differential conductance. Moreover, the effective dot level follows one of the lead chemical potentials to enhance resonant transport, causing novel features in the inelastic tunneling signal. In the linear response regime, we investigate the impact of the electron-phonon interaction on the thermoelectrical properties of the quantum dot device.
76 - T. Koch , J. Loos , A. Alvermann 2011
We consider a quantum dot, affected by a local vibrational mode and contacted to macroscopic leads, in the non-equilibrium steady-state regime. We apply a variational Lang-Firsov transformation and solve the equations of motion of the Green functions in the Kadanoff-Baym formalism up to second order in the interaction coefficients. The variational determination of the transformation parameter through minimization of the thermodynamic potential allows us to calculate the electron/polaron spectral function and conductance for adiabatic to anti-adiabatic phonon frequencies and weak to strong electron-phonon couplings. We investigate the qualitative impact of the quasi-particle renormalization on the inelastic electron tunneling spectroscopy signatures and discuss the possibility of a polaron induced negative differential conductance. In the high-voltage regime we find that the polaron level follows the lead chemical potential to enhance resonant transport.
351 - J Loos , T Koch , A Alvermann 2009
To describe the interaction of molecular vibrations with electrons at a quantum dot contacted to metallic leads, we extend an analytical approach that we previously developed for the many-polaron problem. Our scheme is based on an incomplete variatio nal Lang-Firsov transformation, combined with a perturbative calculation of the electron-phonon self-energy in the framework of generalised Matsubara functions. This allows us to describe the system at weak to strong coupling and intermediate to large phonon frequencies. We present results for the quantum dot spectral function and for the kinetic coefficient that characterises the electron transport through the dot. With these results we critically examine the strengths and limitations of our approach, and discuss the properties of the molecular quantum dot in the context of polaron physics. We place particular emphasis on the importance of corrections to the concept of an antiadiabatic dot polaron suggested by the complete Lang-Firsov transformation.
335 - T. Lahaye , J. Metz , T. Koch 2008
We report on experiments exploring the physics of dipolar quantum gases using a Chromium Bose-Einstein condensate (BEC). By means of a Feshbach resonance, it is possible to reduce the effects of short range interactions and reach a regime where the p hysics is governed by the long-range, anisotropic dipole-dipole interaction between the large ($6 mu_{rm B}$) magnetic moments of Chromium atoms. Several dramatic effects of the dipolar interaction are observed: the usual inversion of ellipticity of the condensate during time-of flight is inhibited, the stability of the dipolar gas depends strongly on the trap geometry, and the explosion following the collapse of an unstable dipolar condensate displays d-wave like features.
67 - T. Koch , T. Lahaye , J. Metz 2007
We report on the experimental observation of the dipolar collapse of a quantum gas which sets in when we reduce the contact interaction below some critical value using a Feshbach resonance. Due to the anisotropy of the dipole-dipole interaction, the stability of a dipolar Bose-Einstein condensate depends not only on the strength of the contact interaction, but also on the trapping geometry. We investigate the stability diagram and find good agreement with a universal stability threshold arising from a simple theoretical model. Using a pancake-shaped trap with the dipoles oriented along the short axis of the trap, we are able to tune the scattering length to zero, stabilizing a purely dipolar quantum gas.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا