ترغب بنشر مسار تعليمي؟ اضغط هنا

Stabilizing a purely dipolar quantum gas against collapse

111   0   0.0 ( 0 )
 نشر من قبل Thierry Lahaye
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report on the experimental observation of the dipolar collapse of a quantum gas which sets in when we reduce the contact interaction below some critical value using a Feshbach resonance. Due to the anisotropy of the dipole-dipole interaction, the stability of a dipolar Bose-Einstein condensate depends not only on the strength of the contact interaction, but also on the trapping geometry. We investigate the stability diagram and find good agreement with a universal stability threshold arising from a simple theoretical model. Using a pancake-shaped trap with the dipoles oriented along the short axis of the trap, we are able to tune the scattering length to zero, stabilizing a purely dipolar quantum gas.



قيم البحث

اقرأ أيضاً

379 - T. Lahaye , J. Metz , T. Koch 2008
We report on experiments exploring the physics of dipolar quantum gases using a Chromium Bose-Einstein condensate (BEC). By means of a Feshbach resonance, it is possible to reduce the effects of short range interactions and reach a regime where the p hysics is governed by the long-range, anisotropic dipole-dipole interaction between the large ($6 mu_{rm B}$) magnetic moments of Chromium atoms. Several dramatic effects of the dipolar interaction are observed: the usual inversion of ellipticity of the condensate during time-of flight is inhibited, the stability of the dipolar gas depends strongly on the trap geometry, and the explosion following the collapse of an unstable dipolar condensate displays d-wave like features.
256 - G. M. Bruun , E. Taylor 2008
We examine the superfluid and collapse instabilities of a quasi two-dimensional gas of dipolar fermions aligned by an orientable external field. It is shown that the interplay between the anisotropy of the dipolar interaction, the geometry of the sys tem, and the p-wave symmetry of the superfluid order parameter means that the effective interaction for pairing can be made very large without the system collapsing. This leads to a broad region in the phase diagram where the system forms a stable superfluid. Analyzing the superfluid transition at finite temperatures, we calculate the Berezinskii--Kosterlitz--Thouless temperature as a function of the dipole angle.
We investigate the time taken for global collapse by a dipolar Bose-Einstein condensate. Two semi-analytical approaches and exact numerical integration of the mean-field dynamics are considered. The semi-analytical approaches are based on a Gaussian ansatz and a Thomas-Fermi solution for the shape of the condensate. The regimes of validity for these two approaches are determined, and their predictions for the collapse time revealed and compared with numerical simulations. The dipolar interactions introduce anisotropy into the collapse dynamics and predominantly lead to collapse in the plane perpendicular to the axis of polarization.
We investigate the collapse of a trapped dipolar Bose-Einstein condensate. This is performed by numerical simulations of the Gross-Pitaevskii equation and the novel application of the Thomas-Fermi hydrodynamic equations to collapse. We observe regime s of both global collapse, where the system evolves to a highly elongated or flattened state depending on the sign of the dipolar interaction, and local collapse, which arises due to dynamically unstable phonon modes and leads to a periodic arrangement of density shells, disks or stripes. In the adiabatic regime, where ground states are followed, collapse can occur globally or locally, while in the non-adiabatic regime, where collapse is initiated suddenly, local collapse commonly occurs. We analyse the dependence on the dipolar interactions and trap geometry, the length and time scales for collapse, and relate our findings to recent experiments.
We use a simple model to describe the nonlinear dynamics of a dense two dimensional dipolar exciton gas. The model predicts an initial fast expansion due to dipole-dipole pressure, followed by a much slower diffusion. The model is in very good agreem ent with recent experimental results. We show that the dipole pressure induced expansion strongly constrains the time available for achieving and observing Bose-Einstein quantum statistical effects, indicating a need for spatial exciton traps. We also suggest that nonlinear ballistic exciton transport due to the strong internal dipole pressure is readily achievable.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا