ﻻ يوجد ملخص باللغة العربية
We report on experiments exploring the physics of dipolar quantum gases using a Chromium Bose-Einstein condensate (BEC). By means of a Feshbach resonance, it is possible to reduce the effects of short range interactions and reach a regime where the physics is governed by the long-range, anisotropic dipole-dipole interaction between the large ($6 mu_{rm B}$) magnetic moments of Chromium atoms. Several dramatic effects of the dipolar interaction are observed: the usual inversion of ellipticity of the condensate during time-of flight is inhibited, the stability of the dipolar gas depends strongly on the trap geometry, and the explosion following the collapse of an unstable dipolar condensate displays d-wave like features.
We report on the experimental observation of the dipolar collapse of a quantum gas which sets in when we reduce the contact interaction below some critical value using a Feshbach resonance. Due to the anisotropy of the dipole-dipole interaction, the
We examine the superfluid and collapse instabilities of a quasi two-dimensional gas of dipolar fermions aligned by an orientable external field. It is shown that the interplay between the anisotropy of the dipolar interaction, the geometry of the sys
We use a simple model to describe the nonlinear dynamics of a dense two dimensional dipolar exciton gas. The model predicts an initial fast expansion due to dipole-dipole pressure, followed by a much slower diffusion. The model is in very good agreem
We report on the realization of a Chromium Bose-Einstein condensate (BEC) with strong dipolar interaction. By using a Feshbach resonance, we reduce the usual isotropic contact interaction, such that the anisotropic magnetic dipole-dipole interaction
We investigate the physics of dipolar bosons in a two dimensional optical lattice. It is known that due to the long-range character of dipole-dipole interaction, the ground state phase diagram of a gas of dipolar bosons in an optical lattice presents