ﻻ يوجد ملخص باللغة العربية
We consider transport through a vibrating molecular quantum dot contacted to macroscopic leads acting as charge reservoirs. In the equilibrium and nonequilibrium regime, we study the formation of a polaron-like transient state at the quantum dot for all ratios of the dot-lead coupling to the energy of the local phonon mode. We show that the polaronic renormalization of the dot-lead coupling is a possible mechanism for negative differential conductance. Moreover, the effective dot level follows one of the lead chemical potentials to enhance resonant transport, causing novel features in the inelastic tunneling signal. In the linear response regime, we investigate the impact of the electron-phonon interaction on the thermoelectrical properties of the quantum dot device.
To describe the interaction of molecular vibrations with electrons at a quantum dot contacted to metallic leads, we extend an analytical approach that we previously developed for the many-polaron problem. Our scheme is based on an incomplete variatio
We investigate the effect of vibrational degrees of freedom on the linear thermoelectric transport through a single-level quantum dot described by the spinless Anderson-Holstein impurity model. To study the effects of strong electron-phonon coupling,
We employ the functional renormalization group to study the effects of phonon-assisted tunneling on the nonequilibrium steady-state transport through a single level molecular quantum dot coupled to electronic leads. Within the framework of the spinle
Nonequilibrium properties of correlated quantum matter are being intensively investigated because of the rich interplay between external driving and the many-body correlations. Of particular interest is the nonequilibrium behavior near a quantum crit
The transmission of electrons through a non-interacting tight-binding chain with an interacting side quantum dot (QD) is analized. When the Kondo effect develops at the dot the conductance presents a wide minimum, reaching zero at the unitary limit.