ترغب بنشر مسار تعليمي؟ اضغط هنا

The interplay between interaction and disorder-induced localization is of fundamental interest. This article addresses localization physics in the fractional quantum Hall state, where both interaction and disorder have nonperturbative consequences. W e provide compelling theoretical evidence that the localization of a single quasiparticle of the fractional quantum Hall state at filling factor $ u=n/(2n+1)$ has a striking {it quantitative} correspondence to the localization of a single electron in the $(n+1)$th Landau level. By analogy to the dramatic experimental manifestations of Anderson localization in integer quantum Hall effect, this leads to predictions in the fractional quantum Hall regime regarding the existence of extended states at a critical energy, and the nature of the divergence of the localization length as this energy is approached. Within a mean field approximation these results can be extended to situations where a finite density of quasiparticles is present.
Topological pairing of composite fermions has led to remarkable ideas, such as excitations obeying non-Abelian braid statistics and topological quantum computation. We construct a $p$-wave paired Bardeen-Cooper-Schrieffer (BCS) wave function for comp osite fermions in the torus geometry, which is a convenient geometry for formulating momentum space pairing as well as for revealing the underlying composite-fermion Fermi sea. Following the standard BCS approach, we minimize the Coulomb interaction energy at half filling in the lowest and the second Landau levels, which correspond to filling factors $ u=1/2$ and $ u=5/2$ in GaAs quantum wells, by optimizing two variational parameters that are analogous to the gap and the Debye cut-off energy of the BCS theory. Our results show no evidence for pairing at $ u=1/2$ but a clear evidence for pairing at $ u=5/2$. To a good approximation, the highest overlap between the exact Coulomb ground state at $ u=5/2$ and the BCS state is obtained for parameters that minimize the energy of the latter, thereby providing support for the physics of composite-fermion pairing as the mechanism for the $5/2$ fractional quantum Hall effect. We discuss the issue of modular covariance of the composite-fermion BCS wave function, and calculate its Hall viscosity and pair correlation function. By similar methods, we look for but do not find an instability to $s$-wave pairing for a spin-singlet composite-fermion Fermi sea at half-filled lowest Landau level in a system where the Zeeman splitting has been set to zero.
70 - Songyang Pu , J. K. Jain 2021
An adiabatic approach put forward by Greiter and Wilczek interpolates between the integer quantum Hall effects of electrons and composite fermions by varying the statistical flux bound to electrons continuously from zero to an even integer number of flux quanta, such that the intermediate states represent anyons in an external magnetic field with the same effective integer filling factor. We consider such anyons on a torus, and construct representative wave functions for their ground as well as excited states. These wave functions involve higher Landau levels in general, but can be explicitly projected into the lowest Landau level for many parameters. We calculate the variational energy gap between the first excited state and ground state and find that it remains open as the statistical phase is varied. Finally, we obtain from these wave functions, both analytically and numerically, various topological quantities, such the ground state degeneracy, the Chern number and the Hall viscosity.
The nature of the fractional quantum Hall effect at $ u=1/2$ observed in wide quantum wells almost three decades ago is still under debate. Previous studies have investigated it by the variational Monte Carlo method, which makes the assumption that t he transverse wave function and the gap between the symmetric and antisymmetric subbands obtained in a local density approximation at zero magnetic field remain valid even at high perpendicular magnetic fields; this method also ignores the effect of Landau level mixing. We develop in this work a three-dimensional fixed phase Monte Carlo method, which gives, in a single framework, the total energies of various candidate states in a finite width quantum well, including Landau level mixing, directly in a large magnetic field. This method can be applied to one-component states, as well two-component states in the limit where the symmetric and antisymmetric bands are nearly degenerate. Our three-dimensional fixed-phase diffusion Monte Carlo calculations suggest that the observed 1/2 fractional quantum Hall state in wide quantum wells is likely to be the one-component Pfaffian state supporting non-Abelian excitations. We hope that this will motivate further experimental studies of this state.
In 1929 Felix Bloch suggested that the paramagnetic Fermi sea of electrons should make a spontaneous transition to a fully-magnetized state at very low densities, because the exchange energy gained by aligning the spins exceeds the enhancement in the kinetic energy. We report here the observation of an abrupt, interaction-driven transition to full magnetization, highly reminiscent of Bloch ferromagnetism that has eluded experiments for the last ninety years. Our platform is the exotic two-dimensional Fermi sea of composite fermions at half-filling of the lowest Landau level. Via quantitative measurements of the Fermi wavevector, which provides a direct measure of the spin polarization, we observe a sudden transition from a partially-spin-polarized to a fully-spin-polarized ground state as we lower the composite fermions density. Our detailed theoretical calculations provide a semi-quantitative account of this phenomenon.
66 - Songyang Pu 2020
The Hall viscosity has been proposed as a topological property of incompressible fractional quantum Hall states and can be evaluated as Berry curvature. This paper reports on the Hall viscosities of composite-fermion Fermi seas at $ u=1/m$, where $m$ is even for fermions and odd for bosons. A well-defined value for the Hall viscosity is not obtained by viewing the $1/m$ composite-fermion Fermi seas as the $nrightarrow infty$ limit of the Jain $ u=n/(nmpm 1)$ states, whose Hall viscosities $(pm n+m)hbar rho/4$ ($rho$ is the two-dimensional density) approach $pm infty$ in the limit $nrightarrow infty$. A direct calculation shows that the Hall viscosities of the composite-fermion Fermi sea states are finite, and also relatively stable with system size variation, although they are not topologically quantized in the entire $tau$ space. I find that the $ u=1/2$ composite-fermion Fermi sea wave function for a square torus yields a Hall viscosity that is expected from particle-hole symmetry and is also consistent with the orbital spin of $1/2$ for Dirac composite fermions. I compare my numerical results with some theoretical conjectures.
The nature of the state at low Landau-level filling factors has been a longstanding puzzle in the field of the fractional quantum Hall effect. While theoretical calculations suggest that a crystal is favored at filling factors $ ulesssim 1/6$, experi ments show, at somewhat elevated temperatures, minima in the longitudinal resistance that are associated with fractional quantum Hall effect at $ u=$ 1/7, 2/11, 2/13, 3/17, 3/19, 1/9, 2/15 and 2/17, which belong to the standard sequences $ u=n/(6npm 1)$ and $ u=n/(8npm 1)$. To address this paradox, we investigate the nature of some of the low-$ u$ states, specifically $ u=1/7$, $2/13$, and $1/9$, by variational Monte Carlo, density matrix renormalization group, and exact diagonalization methods. We conclude that in the thermodynamic limit, these are likely to be incompressible fractional quantum Hall liquids, albeit with strong short-range crystalline correlations. This suggests a natural explanation for the experimentally observed behavior and a rich phase diagram that admits, in the low-disorder limit, a multitude of crystal-FQHE liquid transitions as the filling factor is reduced.
Hall viscosity, also known as the Lorentz shear modulus, has been proposed as a topological property of a quantum Hall fluid. Using a recent formulation of the composite fermion theory on the torus, we evaluate the Hall viscosities for a large number of fractional quantum Hall states at filling factors of the form $ u=n/(2pnpm 1)$, where $n$ and $p$ are integers, from the explicit wave functions for these states. The calculated Hall viscosities $eta^A$ agree with the expression $eta^A=(hbar/4) {cal S}rho$, where $rho$ is the density and ${cal S}=2ppm n$ is the shift in the spherical geometry. We discuss the role of modular invariance of the wave functions, of the center-of-mass momentum, and also of the lowest-Landau-level projection. Finally, we show that the Hall viscosity for $ u={nover 2pn+1}$ may be derived analytically from the microscopic wave functions, provided that the overall normalization factor satisfies a certain behavior in the thermodynamic limit. This derivation should be applicable to a class of states in the parton construction, which are products of integer quantum Hall states with magnetic fields pointing in the same direction.
We construct explicit lowest-Landau-level wave functions for the composite-fermion Fermi sea and its low energy excitations following a recently developed approach [Pu, Wu and Jain, Phys. Rev. B 96, 195302 (2018)] and demonstrate them to be very accu rate representations of the Coulomb eigenstates. We further ask how the Berry phase associated with a closed loop around the Fermi circle, predicted to be $pi$ in a Dirac composite fermion theory satisfying particle-hole symmetry [D. T. Son, Phys. Rev. X 5, 031027 (2015)], is affected by Landau level mixing. For this purpose, we consider a simple model wherein we determine the variational ground state as a function of Landau level mixing within the space spanned by two basis functions: the lowest-Landau-level projected and the unprojected composite-fermion Fermi sea wave functions. We evaluate Berry phase for a path around the Fermi circle within this model following a recent prescription, and find that it rotates rapidly as a function of Landau level mixing. We also consider the effect of a particle-hole symmetry breaking three-body interaction on the Berry phase while confining the Hilbert space to the lowest Landau level. Our study deepens the connection between the $pi$ Berry phase and the exact particle-hole symmetry in the lowest Landau level.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا