ترغب بنشر مسار تعليمي؟ اضغط هنا

Hall Viscosity of the Composite-Fermion Fermi Seas for Fermions and Bosons

67   0   0.0 ( 0 )
 نشر من قبل Songyang Pu
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Songyang Pu




اسأل ChatGPT حول البحث

The Hall viscosity has been proposed as a topological property of incompressible fractional quantum Hall states and can be evaluated as Berry curvature. This paper reports on the Hall viscosities of composite-fermion Fermi seas at $ u=1/m$, where $m$ is even for fermions and odd for bosons. A well-defined value for the Hall viscosity is not obtained by viewing the $1/m$ composite-fermion Fermi seas as the $nrightarrow infty$ limit of the Jain $ u=n/(nmpm 1)$ states, whose Hall viscosities $(pm n+m)hbar rho/4$ ($rho$ is the two-dimensional density) approach $pm infty$ in the limit $nrightarrow infty$. A direct calculation shows that the Hall viscosities of the composite-fermion Fermi sea states are finite, and also relatively stable with system size variation, although they are not topologically quantized in the entire $tau$ space. I find that the $ u=1/2$ composite-fermion Fermi sea wave function for a square torus yields a Hall viscosity that is expected from particle-hole symmetry and is also consistent with the orbital spin of $1/2$ for Dirac composite fermions. I compare my numerical results with some theoretical conjectures.



قيم البحث

اقرأ أيضاً

Hall viscosity, also known as the Lorentz shear modulus, has been proposed as a topological property of a quantum Hall fluid. Using a recent formulation of the composite fermion theory on the torus, we evaluate the Hall viscosities for a large number of fractional quantum Hall states at filling factors of the form $ u=n/(2pnpm 1)$, where $n$ and $p$ are integers, from the explicit wave functions for these states. The calculated Hall viscosities $eta^A$ agree with the expression $eta^A=(hbar/4) {cal S}rho$, where $rho$ is the density and ${cal S}=2ppm n$ is the shift in the spherical geometry. We discuss the role of modular invariance of the wave functions, of the center-of-mass momentum, and also of the lowest-Landau-level projection. Finally, we show that the Hall viscosity for $ u={nover 2pn+1}$ may be derived analytically from the microscopic wave functions, provided that the overall normalization factor satisfies a certain behavior in the thermodynamic limit. This derivation should be applicable to a class of states in the parton construction, which are products of integer quantum Hall states with magnetic fields pointing in the same direction.
In bilayer quantum Hall systems at filling fractions near nu=1/2+1/2, as the spacing d between the layers is continuously decreased, intra-layer correlations must be replaced by inter-layer correlations, and the composite fermion (CF) Fermi seas at l arge d must eventually be replaced by a composite boson (CB) condensate or 111 state at small d. We propose a scenario where CBs and CFs coexist in two interpenetrating fluids in the transition. Trial wavefunctions describing these mixed CB-CF states compare very favorably with exact diagonalization results. A Chern-Simons transport theory is constructed that is compatible with experiment.
We study the role of anisotropy on the transport properties of composite fermions near Landau level filling factor $ u=1/2$ in two-dimensional holes confined to a GaAs quantum well. By applying a parallel magnetic field, we tune the composite fermion Fermi sea anisotropy and monitor the relative change of the transport scattering time at $ u=1/2$ along the principal directions. Interpreted in a simple Drude model, our results suggest that the scattering time is longer along the longitudinal direction of the composite fermion Fermi sea. Furthermore, the measured energy gap for the fractional quantum Hall state at $ u=2/3$ decreases when anisotropy becomes significant. The decrease, however, might partly stem from the charge distribution becoming bilayer-like at very large parallel magnetic fields.
Composite fermions in fractional quantum Hall (FQH) systems are believed to form a Fermi sea of weakly interacting particles at half filling $ u=1/2$. Recently, it was proposed (D. T. Son, Phys. Rev. X 5, 031027 (2015)) that these composite fermions are Dirac particles. In our work, we demonstrate experimentally that composite fermions found in monolayer graphene are Dirac particles at half filling. Our experiments have addressed FQH states in high-mobility, suspended graphene Corbino disks in the vicinity of $ u=1/2$. We find strong temperature dependence of conductivity $sigma$ away from half filling, which is consistent with the expected electron-electron interaction induced gaps in the FQH state. At half filling, however, the temperature dependence of conductivity $sigma(T)$ becomes quite weak as expected for a Fermi sea of composite fermions and we find only logarithmic dependence of $sigma$ on $T$. The sign of this quantum correction coincides with weak antilocalization of composite fermions, which reveals the relativistic Dirac nature of composite fermions in graphene.
When two 2D electron gas layers, each at Landau level filling factor $ u=1/2$, are close together a condensate of interlayer excitons emerges at low temperature. Although the excitonic phase is qualitatively well understood, the incoherent phase just above the critical layer separation is not. Using a combination of interlayer tunneling spectroscopy and conventional transport, we explore the incoherent phase in samples both near the phase boundary and further from it. In the more closely spaced bilayers we find the electronic spectral functions narrower and the Fermi energy of the $ u = 1/2$ composite fermion metal smaller than in the more widely separated bilayers. We attribute these effects to a softening of the intralayer Coulomb interaction due to interlayer screening.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا