ترغب بنشر مسار تعليمي؟ اضغط هنا

Interplay between fractional quantum Hall liquid and crystal phases at low filling

116   0   0.0 ( 0 )
 نشر من قبل Ajit C. Balram
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The nature of the state at low Landau-level filling factors has been a longstanding puzzle in the field of the fractional quantum Hall effect. While theoretical calculations suggest that a crystal is favored at filling factors $ ulesssim 1/6$, experiments show, at somewhat elevated temperatures, minima in the longitudinal resistance that are associated with fractional quantum Hall effect at $ u=$ 1/7, 2/11, 2/13, 3/17, 3/19, 1/9, 2/15 and 2/17, which belong to the standard sequences $ u=n/(6npm 1)$ and $ u=n/(8npm 1)$. To address this paradox, we investigate the nature of some of the low-$ u$ states, specifically $ u=1/7$, $2/13$, and $1/9$, by variational Monte Carlo, density matrix renormalization group, and exact diagonalization methods. We conclude that in the thermodynamic limit, these are likely to be incompressible fractional quantum Hall liquids, albeit with strong short-range crystalline correlations. This suggests a natural explanation for the experimentally observed behavior and a rich phase diagram that admits, in the low-disorder limit, a multitude of crystal-FQHE liquid transitions as the filling factor is reduced.



قيم البحث

اقرأ أيضاً

We present a coupled-wire construction of a model with chiral fracton topological order. The model combines the known construction of $ u=1/m$ Laughlin fractional quantum Hall states with a planar p-string condensation mechanism. The bulk of the mode l supports gapped immobile fracton excitations that generate a hierarchy of mobile composite excitations. Open boundaries of the model are chiral and gapless, and can be used to demonstrate a fractional quantized Hall conductance where fracton composites act as charge carriers in the bulk. The planar p-string mechanism used to construct and analyze the model generalizes to a wide class of models including those based on layers supporting non-Abelian topological order. We describe this generalization and additionally provide concrete lattice-model realizations of the mechanism.
Measurements of the Hall and dissipative conductivity of a strained Ge quantum well on a SiGe/(001)Si substrate in the quantum Hall regime are reported. We find quantum Hall states in the Composite Fermion family and a precursor signal at filling fra ction $ u=5/2$. We analyse the results in terms of thermally activated quantum tunneling of carriers from one internal edge state to another across saddle points in the long range impurity potential. This shows that the gaps for different filling fractions closely follow the dependence predicted by theory. We also find that the estimates of the separation of the edge states at the saddle are in line with the expectations of an electrostatic model in the lowest spin-polarised Landau level (LL), but not in the spin-reversed LL where the density of quasiparticle states is not high enough to accommodate the carriers required.
135 - Massimo Rontani 2004
We study the crossover between liquid and solid electron phases in a two-dimensional harmonic trap as the density is progressively diluted. We infer the formation of geometrically ordered phases from charge distributions and pair correlation function s obtained via a large scale configuration interaction calculation.
We directly measure the chemical potential jump in the low-temperature limit when the filling factor traverses the nu = 1/3 and nu = 2/5 fractional gaps in two-dimensional (2D) electron system in GaAs/AlGaAs single heterojunctions. In high magnetic f ields B, both gaps are linear functions of B with slopes proportional to the inverse fraction denominator, 1/q. The fractional gaps close partially when the Fermi level lies outside. An empirical analysis indicates that the chemical potential jump for an IDEAL 2D electron system, in the highest accessible magnetic fields, is proportional to q^{-1}B^{1/2}.
The properties of the isotropic incompressible $ u=5/2$ fractional quantum Hall (FQH) state are described by a paired state of composite fermions in zero (effective) magnetic field, with a uniform $p_x+ip_y$ pairing order parameter, which is a non-Ab elian topological phase with chiral Majorana and charge modes at the boundary. Recent experiments suggest the existence of a proximate nematic phase at $ u=5/2$. This finding motivates us to consider an inhomogeneous paired state - a $p_x+ip_y$ pair-density-wave (PDW) - whose melting could be the origin of the observed liquid-crystalline phases. This state can viewed as an array of domain and anti-domain walls of the $p_x+i p_y$ order parameter. We show that the nodes of the PDW order parameter, the location of the domain walls (and anti-domain walls) where the order parameter changes sign, support a pair of symmetry-protected counter-propagating Majorana modes. The coupling behavior of the domain wall Majorana modes crucially depends on the interplay of the Fermi energy $E_{F}$ and the PDW pairing energy $E_{textrm{pdw}}$. The analysis of this interplay yields a rich set of topological states. The pair-density-wave order state in paired FQH system provides a fertile setting to study Abelian and non-Abelian FQH phases - as well as transitions thereof - tuned by the strength of the paired liquid crystalline order.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا